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ABSTRACT	

This	thesis	explores	a	communication	method	that	is	relevant	to	learning	by	reading	systems	

and	educational	software	systems:	instructional	analogy.		It	is	widely	recognized	that	analogical	

reasoning	plays	a	vital	role	in	our	ability	to	detect	similarities	and	differences	and	to	transfer	knowledge	

between	topics.		Building	software	that	can	understand	these	analogies	can	advance	the	state	of	the	art	

in	knowledge	capture	and	is	an	important	step	toward	human-level	learning	by	reading.		However,	this	

goal	involves	several	challenges.		Instructional	analogies	are	expressed	in	natural	language	and	are	often	

accompanied	by	rich	spatial	representations.		Successful	interpretation	of	these	analogies	requires	

substantial	background	knowledge	about	everyday	experiences	and	the	physical	world.		Lastly,	the	

target	knowledge	for	instructional	analogies	for	introductory	science	is	often	conceptual	and	qualitative.		

The	claims	of	this	thesis	are	that	a	combination	of	simplified	natural	language	understanding,	sketch	

understanding,	and	structure-mapping	can	be	used	to	build	qualitative,	conceptual	knowledge	from	

multimodal	instructional	analogies,	and	that	such	knowledge	can	be	used	to	answer	questions	about	the	

new	domain.		A	model	of	instructional	analogy	interpretation	was	developed	and	tested	on	a	set	of	11	

multimodal	analogies.		The	model	achieves	83%	accuracy	on	queries	of	target	knowledge.		Ablation	

experiments	indicate	that	the	use	of	base	domain	knowledge,	implicit	background	knowledge,	and	

sketch	knowledge	make	varying	contributions	toward	accuracy.		The	knowledge	acquired	from	these	

analogies	was	used	to	answer	11	out	of	14	related	questions	on	middle	school	science	exams.		

Continued	research	in	this	area	can	improve	reading	systems	and	opens	the	door	to	new	kinds	of	

intelligent	tutoring	systems.	
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Chapter	1: Introduction	

This	thesis	explores	a	communication	method	that	is	relevant	to	learning	by	reading	systems	and	

educational	software	systems:	instructional	analogy.		It	is	widely	recognized	that	analogical	reasoning	

plays	a	vital	role	in	our	ability	to	detect	similarities	and	differences	and	to	transfer	knowledge	between	

topics.		Instructional	analogies	are	very	frequently	used	in	textbooks	and	by	educators	to	communicate	

new	ideas	to	people,	especially	in	science,	technology,	engineering,	and	mathematics	(STEM)	domains.		

What	is	the	nature	of	these	analogies?		What	are	the	reasoning	requirements	for	interpreting	them?		Do	

they	provide	knowledge	that	is	useful	to	an	intelligent	system?		These	are	the	main	questions	that	this	

thesis	addresses.	

This	thesis	shows	that	(at	least)	the	following	capabilities	are	needed	to	interpret	instructional	analogies:	

1) Multimodal	reasoning,	including	natural	language	understanding,	spatial	reasoning,	and	the	

ability	to	combine	information	from	both	modalities	

2) Use	of	background	knowledge,	including	partial	knowledge	about	everyday	concepts	or	

experiences	

3) Analogical	reasoning,	including	transferring	knowledge	from	one	topic	to	another	

Without	limits,	these	requirements	can	expand	to	AI-complete	problems.		However,	the	task	constraints	

imposed	by	instructional	analogies	can	be	used	to	contextualize	these	requirements,	and	to	develop	

heuristics	that	make	interpretation	feasible.		This	thesis	demonstrates	how	these	requirements,	

constrained	by	the	reasoning	goals	of	instructional	analogies,	can	be	fulfilled	with	a	combination	of	

simplified	natural	language	understanding,	sketch	understanding,	and	analogical	reasoning	governed	by	

the	structure-mapping	theory	of	analogy	(Gentner,	2010).						
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1.1 Motivation	

Analogical	reasoning	is	a	hallmark	of	interpersonal	communication	and	learning.		Analogies	are	powerful	

tools	for	communicating	abstract	ideas,	highlighting	important	similarities	and	differences,	and	focusing	

inference.	Instructional	analogies	are	comparisons	that	are	often	used	to	teach	introductory	science	

topics	(Glynn,	2008;	Harrison	&	Coll,	2007;	Zeitoun,	1984).		The	purpose	of	instructional	analogies	is	to	

describe	new,	unfamiliar	concepts	in	terms	of	familiar	ones.		They	tend	to	use	basic,	everyday	

experiences	or	objects	as	a	source	of	knowledge	(often	referred	to	as	a	base	domain)	that	can	be	

projected	onto	a	new	topic	(often	referred	to	as	a	target	domain).		For	example,	in	biology,	enzyme	

activation	is	described	as	a	process	that	is	similar	to	unlocking	a	lock.		Instructional	analogies	are	often	

presented	explicitly,	with	individual	similarities	identified,	e.g.	An	enzyme	molecule	is	like	a	key	/	A	

substrate	molecule	is	like	a	lock,	Figure	1.			Analogies	may	also	be	implicit,	where	the	comparison	is	

deeply	embedded	in	the	language	used	to	describe	the	topic,	e.g.	The	electrical	current	flows	through	

the	wire.		In	some	cases,	it	can	be	very	difficult	to	describe	things	without	implicitly	invoking	an	analogy	

or	conceptual	metaphor	(Lakoff	&	Johnson,	2003).	

Instructional	analogies	may	also	take	the	form	of	comparisons	between	highly	similar	things.		

Figure	2	shows	a	classic	bridging	analogy	(Clement,	1993).		The	spatial	arrangement	of	the	two	images	is	

intended	to	convey	an	analogy	between	a	hand	pressing	down	on	a	spring	and	a	book	at	rest	on	a	table.		

It	is	also	intended	to	suggest	that,	just	as	the	spring	pushes	up	on	the	hand,	the	table	pushes	up	on	the	

book.		This	analogy	can	be	used	to	teach	students	about	forces	on	objects	in	static	equilibrium.		Unlike	

analogies	for	enzyme	action	and	electric	current,	this	analogy	involves	two	scenarios	of	the	same	

domain.		For	this	reason,	it	is	referred	to	as	a	within-domain	analogy,	whereas	analogies	between	two	

completely	different	topics	are	referred	to	as	cross-domain	analogies.			
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Spatial	representations	provide	additional	benefits	to	instructional	analogies.		As	illustrated	by	

Figure	2,	the	spatial	arrangement	of	elements	in	a	drawing	or	diagram	can	invite	comparison	between	

individual	items	that	are	laid	out	in	a	similar	way.		For	STEM	domains	in	particular,	students	often	have	

to	learn	about	concepts	that	they	cannot	observe	directly.		In	geoscience,	for	example,	students	must	

understand	processes	that	cannot	be	fully	observed	visually	because	they	are	mostly	invisible	(e.g.	the	

carbon	cycle),	they	occur	over	thousands	of	years	(e.g.	subduction),	or	they	exist	on	very	large	scales	

	

Lock	and	key	 Enzymes	and	substrates	
Key	 Enzyme	Molecule	
Lock	(padlock)	 Substrate	Molecule	
Notched	part	of	key	(has	unique	shape)		 Active	site	(has	unique	chemical	makeup)	
Keys	unlock	only	specific	locks	 Enzymes	react	only	with	specific	substrates	
Key	breaks	apart	(unlocks)	a	padlock	 Enzyme	action	breaks	apart	substrate	

molecules.	
Key	comes	out	of	the	lock	unchanged	and	
can	be	reused.	

The	enzyme	comes	out	of	the	reaction	
unchanged	and	can	be	reused.	

	

Figure	1:	An	analogy	used	to	explain	how	enzymes	and	substrates	work	from	Harrison	&	Coll	(2007),	p.	96.			
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(e.g.	layers	of	the	earth).		Similar	issues	are	encountered	in	biology	(e.g.	microbiology)	and	physics	(e.g.	

electricity).		Spatial	representations	provide	a	way	for	students	to	visually	observe	things	that	they	

would	not	be	able	to	see	otherwise.			

Instructional	analogies	also	tend	to	focus	on	qualitative	knowledge,	which	is	important	for	

solving	problems	with	partial	information	and	for	representing	continuous	phenomena	with	discrete	

labels.		Qualitative	knowledge	allows	us	to	understand	scenarios	with	little	or	no	detailed	quantitative	

information.		The	connection	between	analogical	reasoning	and	the	development	of	abstract	knowledge	

is	important	because	abstract,	qualitative	knowledge	is	a	hallmark	of	expert	knowledge	(Chi	et	al.,	

1981).		This	has	impacted	teaching	strategies	and	assessments.		For	example,	the	force	concept	

inventory	is	a	test	of	qualitative	physics	knowledge	that	was	developed	after	discovering	that	

quantitative	assessments	were	poor	measures	of	physics	expertise	(Hestenes	&	Halloun,	1995;	Hestenes	

et	al.,	1992).		Analogies	are	useful	for	building	qualitative	knowledge	because	they	enable	people	to	use	

a	familiar	vocabulary	to	partially	describe	new	topics	and,	as	described	next,	they	help	people	focus	on	

abstract	similarities	and	differences.					
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1.1.1. Structure	Mapping	Theory	

Structure-mapping	theory	(SMT)	(Gentner,	1983)	provides	an	account	of	how	analogical	reasoning	

works	and	why	it	is	useful.		According	to	SMT,	there	is	an	important	distinction	between	surface	

similarity	and	structural	similarity.		Surface	similarity	refers	to	shared	attributes	between	two	things,	e.g.	

color,	overall	shape.		Structural	similarity	(also	called	relational	similarity)	refers	to	shared	relational	

structure,	e.g.	that	two	objects	cause	something	else	to	happen.		The	distinction	between	relational	

similarity	and	surface	similarity	is	important	because	SMT	claims	that	relational	similarity	is	the	type	of	

similarity	that	has	the	greatest	inferential	power.		The	presence	of	shared	systems	of	relations	is	

referred	to	as	systematicity,	and	the	importance	of	shared	systems	of	relations	for	detecting	structural	

alignment	is	referred	to	as	the	systematicity	principle.	One	can	see	how	the	distinction	between	surface	

and	structural	similarity	maps	to	instructional	analogies	described	earlier:	within-domain	analogies	have	

high	surface	similarity	(and	possibly,	but	not	necessarily,	high	structural	similarity),	and	cross-domain	

analogies	(if	they	are	effective	instructionally)	have	high	structural	similarity	(and	possibly,	but	not	

necessarily,	some	surface	similarity).						

	

Figure	2:	An	analogy	between	a	book	at	rest	on	a	table	and	a	hand	pushing	
down	on	a	spring,	Conceptual	Physics,	Hewitt	(p.	28).	
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Psychological	evidence	supports	the	claim	that	structural	alignment	drives	what	analogical	

inferences	people	make.		In	a	seminal	study	on	problem	solving,	Gick	and	Holyoak	(1980)	demonstrated	

that	cross-domain	analogies	between	stories	could	be	used	for	problem	solving.		They	demonstrated	not	

only	that	people	can	use	stories	from	distant	domains	to	solve	new	problems,	but	that	the	level	of	

structural	similarity	impacts	the	likelihood	of	arriving	at	an	analogous	solution.		In	a	similar	study,	

Blanchette	and	Dunbar	(2002)	showed	that	people	have	a	selective	bias	for	inferences	that	have	high	

systematicity,	i.e.	are	supported	by	high	structural	similarity.		The	structural	similarity	that	supports	

analogical	inference	can	be	spatial	as	well	(Gentner	et	al.,	2015).		In	a	study	at	the	Children’s	Museum	in	

Chicago,	children	were	shown	pairs	of	towers	that	varied	in	terms	of	their	surface	and	structural	

similarity	to	each	other.		In	this	case,	structural	similarity	didn’t	involve	semantic	relations	in	a	story,	but	

spatial	relations	between	parts	of	the	towers.		Children	were	told	to	compare	the	two	towers	to	each	

other	and	were	asked,	“which	one	is	stronger?”	(i.e.	more	stable?).		In	each	pair,	only	one	tower	used	a	

diagonal	brace	in	its	construction,	which	made	it	more	stable	than	the	tower	that	lacked	a	diagonal	

brace.		The	pairs	were	either	highly	alignable,	meaning	that	their	parts	shared	many	spatial	

relationships,	or	less	alignable,	meaning	that	their	parts	shared	fewer	spatial	relationships.		Children	

between	the	ages	6	and	8	who	were	shown	the	highly	alignable	pairs	were	more	likely	to	apply	the	

diagonal	brace	principle	to	a	tower	repair	task	than	children	who	were	in	the	low	alignment	condition.		

This	indicates	that	the	important	difference	between	highly	alignable	towers	was	made	more	salient	by	

the	presence	of	many	shared	spatial	relations.		Other	studies	on	SMT	illustrate	the	importance	of	

systematicity	(Clement	&	Gentner,	1991),	the	impact	of	relational	language	on	category	learning	

(Gentner	&	Namy,	1999),	and	the	career	of	similarity	whereby	the	ability	to	attend	to	abstract	relational	

similarities	increases	with	age	and	expertise	(Gentner	&	Ratterman,	1991).	
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Structure-mapping	theory	also	suggests	that	the	alignment	of	relational	structures	enables	

important	similarities	to	emerge,	while	abstracting	away	irrelevant	details	(Kotovsky	&	Gentner,	1996;	

Namy	&	Gentner,	2002).		Analogical	reasoning	commonly	refers	to	transferring	knowledge	from	a	

known	topic	to	an	unknown	topic,	but	researchers	have	shown	that	even	when	presented	with	two	

scenarios	that	are	both	only	partially	understood,	mutual	alignment	can	promote	deep	understanding	

(Kurtz	et	al.,	2001;	Mason,	2004).	This	leads	to	the	formation	of	abstract	knowledge,	or	schemas,	which	

can	readily	be	transferred	to	novel	situations.		Gick	and	Holyoak	(1983)	found	that	abstract	schemas	for	

solving	particular	story	problems	can	be	induced	by	comparing	two	analogous	stories,	and	that	the	act	

of	comparing	analogous	stories	is	more	effective	than	studying	and	summarizing	one	analogous	story	

before	being	reminded	of	it	at	transfer	time.			Lowenstein	et	al.	(1999)	conducted	a	transfer	learning	

experiment	with	business	school	students	and	found	that	comparing	negotiation	scenarios	was	more	

effective	for	transfer	than	reading	identical	scenarios	independently.		Gadgil,	Nokes-Malach	and	Chi	

(2012)	found	that	comparison	of	different	mental	models	of	the	circulatory	system	was	more	effective	

than	self-explanation	at	undoing	misconceptions.		In	another	investigation,	analogical	comparison	and	

self-explanation	were	used	to	promote	far	transfer	in	physics	problem	solving	(Nokes-Malach	et	al.,	

2013),	and	both	were	independently	more	effective	than	simply	reading	from	worked	examples.		

Additionally,	the	quality	of	the	schemas	produced	by	participants	predicts	how	often	they	are	able	to	

transfer	that	schema	to	new	examples	(Gentner	et	al.,	2003;	Gick	&	Holyoak,	1983;	Loewenstein	et	al.,	

1999).		These	studies	indicate	that	analogical	comparisons	facilitate	the	acquisition	of	abstract	

knowledge.		Given	the	importance	of	qualitative	knowledge	in	early	science	education,	it	makes	sense	

that	analogies	are	appealing	instructional	tools.	

Despite	evidence	of	their	efficacy,	there	are	circumstances	that	can	cause	analogies	to	be	

misleading.		Spiro	et	al.	(1989)		developed	a	taxonomy	of	eight	types	of	analogy	pitfalls,	where	there	is	a	
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tendency	to	oversimplify	complex	ideas	based	on	individual	analogies.		These	pitfalls	include	various	

ways	of	over-projecting	information	from	the	base	domain	(i.e.	the	known	topic)	to	the	target	domain	

(i.e.	the	new	topic)	or	missing	important	parts	of	the	target	domain	because	there	are	no	corresponding	

parts	in	the	base	domain.		These	pitfalls	can	be	thought	of	as	problems	with	the	alignment	process	or	as	

inadequate	evaluation	of	candidate	inferences.		There	are	also	two	pitfalls	that	relate	to	the	specific	

terminology	that	is	used	in	analogies.		Some	terms	have	common-knowledge	connotations	that	conflict	

with	their	technical	meanings.		Spiro	et	al.	provide	an	example	from	biology,	where	the	word	

“compliance”	refers	to	the	flexibility	of	blood	vessels,	and	students	develop	misconceptions	about	blood	

vessels	“giving	way	to”	or	“surrendering	to”	blood.	This	type	of	pitfall	is	due	to	the	recruitment	of	

erroneous	or	irrelevant	background	knowledge	that	makes	its	way	into	the	analogical	mapping.		While	

the	taxonomy	identified	by	Spiro	and	colleagues	describes	the	various	misconceptions	that	can	arise	

from	analogies,	structure-mapping	can	provide	additional	insight	into	why	these	misconceptions	take	

place.		The	systematicity	principle	indicates	that	common	relational	structures	are	critical	to	making	

structural	alignments.		It	is	therefore	critical	to	make	common	relations	known	and	block	potential	

mismatches.		Our	tendency	for	noticing	surface	similarity	also	plays	a	role	in	these	pitfalls,	since	we	

process	local	surface	matches	before	(or	faster	than)	relational	ones	(Goldstone	&	Medin,	1994).		If	two	

items	in	a	mapping	are	intended	to	correspond,	but	a	competing	match	shares	greater	surface	similarity,	

it	is	more	difficult	to	arrive	at	the	intended	mapping.		Such	analogies	are	called	cross-mapped	

comparisons	because	common	surface	attributes	invite	an	unintended	correspondence	(Gentner	&	

Toupin,	1986).		Cross-mapped	comparisons	are	more	difficult	for	novices	(Gentner	&	Ratterman,	1991),	

indicating	that,	especially	when	teaching	a	new	topic,	surface	similarity	should	be	as	consistent	as	

possible	with	relational	matches.		Other	factors	that	impede	the	ability	to	detect	relational	matches	

include	excessive	cognitive	load	(Markman	&	Gentner,	1993)	and	unfamiliarity	with	the	base	domain.		
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These	pitfalls	and	recommended	solutions	are	consistent	with	the	teaching	strategies	identified	by	the	

education	literature,	which	are	described	next.	

	There	are	three	prominent	guides	for	teaching	with	analogies:	the	General	Model	of	Analogy	

Teaching	(GMAT)	(Zeitoun,	1984),	the	Teaching	with	Analogies	(TWA)	guide	(Glynn,	2008),	and	the	Focus	

Action	Reflection	(FAR)	guide	(Harrison	&	Coll,	2007).		The	general	principles	for	all	three	guides	are	very	

similar	and	consistent.		They	all	stress	the	importance	of	assessing	learners’	knowledge	prior	to	

instruction	as	well	as	explicitly	identifying	similarities	and	differences	between	the	topics	in	the	analogy.		

To	use	Glynn’s	terms,	simple	analogies	only	give	the	student	the	base	and	the	target,	e.g.	“An	animal	cell	

is	like	a	city,”	whereas	elaborate	analogies	systematically	map	properties	of	one	description	to	

properties	of	the	other.		Elaborate	analogies	are	preferred.		It	is	important	to	identify	differences	as	well	

because	learners	need	to	be	made	aware	of	how	the	analogy	breaks	down.		Without	knowing	the	

differences,	the	analogy	may	be	taken	too	far,	leading	to	incorrect	inferences	or	misconceptions.		The	

use	of	multiple	analogies	is	also	recommended	to	refine	knowledge	and	fill	in	gaps	that	other	analogies	

leave	open.		These	are	important	parts	of	the	teaching	process	because	they	address	some	of	the	pitfalls	

identified	by	Spiro	et	al.	(1989).		Holyoak	and	Richland	(2014)	take	these	practices	even	further,	

recommending	(1)	multiple	bases/sources	for	analogies	presented	in	order	of	difficulty	to	facilitate	

progressive	alignment	(Gentner	&	Medina,	1998),	(2)	techniques	for	reducing	working	memory	load	(e.g.	

using	visual	representations),	and	(3)	the	use	visual	representations	and	gestures	that	highlight	

relational	commonalities,	making	them	highly	alignable.		These	recommendations	are	consistent	with	

the	literature	supporting	the	use	of	progressive	alignment,	relational	language,	and	alignability	to	

promote	learning	(Gentner	et	al.,	2015;	Gentner	&	Ratterman,	1991;	Kotovsky	&	Gentner,	1996).		In	

general,	these	separate	recommendations	are	complementary.		The	FAR	Guide	is	a	particularly	useful	
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resource	because	it	contains	a	collection	of	instructional	analogies	for	many	different	science	domains.		

For	this	reason,	it	is	used	as	a	source	of	material	for	this	thesis.	

The	education	and	cognitive	science	literature	indicates	that	multimodal	instructional	analogies	

play	important	roles	for	positive	learning	outcomes	in	people	(Alfieri	et	al.,	2013).		Interactive	AI	systems	

should	therefore	know	how	to	interpret	these	analogies	so	that	they	can	communicate	more	naturally	

with	people	and	so	that	they	can	capture	knowledge	in	the	same	ways	that	people	do.		However,	

current	AI	systems	lack	the	ability	to	understand	or	make	use	of	multimodal	instructional	analogies.	

1.1.2. Impact	in	AI	

Using	analogy	to	transfer	knowledge	between	domains,	as	people	do,	is	a	longstanding	problem	

in	AI	with	many	applications.		Researchers	believed	early	on	that	the	ability	to	evaluate	a	new	scenario	

with	respect	to	some	prior	experience	could	be	very	useful	in	planning	(Veloso	&	Carbonell,	1993),	

learning	(Burstein,	1985),	and	problem	solving	(Falkenhainer,	1990;	Klenk	&	Forbus,	2013).		In	addition	

to	being	able	to	use	analogies	to	transfer	knowledge,	intelligent	systems	need	to	know	how	to	interpret	

analogies	for	human-level	learning	by	reading	(Barbella	&	Forbus,	2011).		As	we	move	toward	the	goal	of	

building	interactive	intelligent	systems,	analogical	reasoning	becomes	an	important	requirement	for	

learning	from	human	collaborators,	who	may	use	novel	analogies	to	explain	complex	phenomena.		

Similarly,	interactive	intelligent	systems	need	the	ability	to	communicate	via	analogy	to	engage	in	rich	

interactions	with	their	human	collaborators	or	to	explain	new	concepts	to	them.		Given	that	analogies	

are	such	powerful	tools	for	learning,	building	analogy-based	tutoring	systems	has	been	proposed	(Lulis	

et	al.,	2004;	Murray	et	al.,	1990),	but	of	the	three	that	have	been	implemented,	all	are	intended	to	

operate	in	a	single	domain	and	on	a	restricted	topic	(i.e.	support	forces	(Murray	et	al.,	1990),	how	the	

circulatory	system	works	(Lulis	et	al.,	2004),	and	topics	in	data	structures	(Harsley	et	al.,	2016)).		
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As	with	many	forms	of	knowledge	capture,	reasoning	about	analogies	within	one	modality	is	not	

enough.		Multimodal	instructional	analogies	are	pervasive	in	textbooks	and	classrooms.	Analogies	in	

textbooks	are	often	accompanied	by	pictures	or	diagrams,	and	the	use	of	spatial	representations	is	part	

of	best	practices	for	teaching	with	analogies,	as	mentioned	above	(Holyoak	&	Richland,	2014).		The	

importance	of	spatial	representations	is	not	surprising	because	they	lighten	working	memory	load	

(Larkin	&	Simon,	1987)	and	support	students’	spatial	reasoning,	which	has	been	shown	to	be	a	strong	

predictor	for	success	in	many	STEM	domains	(Wai	et	al.,	2009).		For	analogies	in	particular,	spatial	

representations	can	facilitate	alignment,	making	analogies	like	the	one	shown	in	Figure	2	very	easy	for	

people	to	align.		It	is	therefore	important	for	an	intelligent	system	to	be	able	to	take	advantage	of	the	

spatial	information	that	is	depicted	with	instructional	analogies.					

Intelligent	systems	that	can	combine	analogical	reasoning,	qualitative	reasoning,	and	spatial	

reasoning,	can	advance	the	state	of	the	art	in	knowledge	capture.		Understanding	the	requirements	for	

reasoning	about	multimodal	instructional	analogies	is	an	important	step	toward	this	goal.		The	claims	of	

this	thesis	are	that	a	combination	of	simplified	natural	language	understanding,	spatial	reasoning,	and	

structure-mapping	can	be	used	to	build	qualitative,	conceptual	knowledge	from	multimodal	

instructional	analogies,	and	that	such	knowledge	can	be	used	to	answer	questions	about	the	new	

domain.		We	examine	those	claims	in	detail	next.	

1.2 Claims	and	Contributions	

Claim	1:	Structure-mapping	can	be	used	to	build	qualitative	knowledge	from	multimodal	instructional	

analogies.	

This	claim	is	supported	by	experiments	in	Chapter	4.		It	can	be	decomposed	into	three	sub	claims:	

1) Multimodal	instructional	analogies	use	visual	representations	to	facilitate	interpretation.	



25	
	

2) Instructional	analogies	use	background	knowledge	to	facilitate	interpretation.	

3) Multimodal	integration	and	analogy	interpretation	can	be	achieved	using	structure-mapping.	

A	qualitative	analysis	of	common	analogies	used	to	teach	introductory	science	provides	evidence	that	

visual	representations	are	pervasive	and	that	accurate	interpretation	relies	on	implicit	background	

knowledge.		Based	on	this	analysis,	I	implemented	an	analogy	interpretation	system	that	takes	as	input	

simplified	natural	language	passages	and	digital	sketches.		This	system	uses	spatial	and	conceptual	

information	depicted	in	each	sketch	and	expressed	in	natural	language	to	build	and	interpret	

instructional	analogies.		The	resulting	knowledge	is	qualitative	because	it	includes	causal	relationships	

between	continuous	quantities	and	type-level	rules	that	may	not	be	universally	true,	but	are	

nonetheless	useful	for	reasoning.		Structure-mapping	serves	two	main	purposes	in	this	system.		It	is	the	

process	by	which	visual	and	text-based	representations	are	aligned	and	integrated.		It	is	also	the	process	

by	which	the	instructional	analogy	is	interpreted.		The	interpretation	allows	the	system	to	construct	

facts	about	the	new	topic	that	use	ontologies	from	a	large	scale	knowledge	base.		Variations	in	the	

reasoning	components	of	the	system	demonstrate	the	relative	contribution	of:	

1) Spatial	Information	/	Multimodal	integration	

2) Background	knowledge		

3) Explicit	base	domain	knowledge	

Contribution	1:	Interpretation	requirements	and	strategies	for	multimodal	instructional	analogies.	

As	a	result	of	the	experiments	used	to	support	claim	1,	a	set	of	interpretation	strategies	are	identified	

for	multimodal	instructional	analogy	interpretation.		These	strategies	are:	

1) The	use	of	visual	representations	as	a	natural	language	disambiguation	heuristic	
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2) The	use	of	visual-conceptual	elaboration	for	interpreting	sketches	

3) The	use	of	structure-mapping	for	combining	visual	and	sketch-based	representations	

4) The	use	of	dialogue	acts	and	event	interpretations	for	determining	cross-domain	match	

constraints	

5) Type-level	summarization	of	facts	prior	to	analogical	mapping	

Claim	2:	Qualitative	knowledge	captured	via	multimodal	instructional	analogies	can	be	used	to	answer	

questions.	

This	claim	is	supported	by	experiment	in	Chapter	5,	which	demonstrates	that	the	knowledge	captured	

from	a	set	of	multimodal	instructional	analogies,	although	qualitative	and	incomplete,	can	be	used	to	

answer	questions	from	middle	school	science	exams.		It	is	not	the	case	that	the	knowledge	captured	

from	multimodal	instructional	analogies	is	sufficient	for	answering	all	(or	most)	of	the	exam	questions.		

The	experiments	do	suggest,	however,	that	the	qualitative	knowledge	plus	some	simple	question	

answering	heuristics	are	useful	for	answering	questions	about	basic	functions	and	properties	of	

concepts	in	the	tested	domain.	

Contribution	2:	Question	answering	strategies	using	knowledge	captured	via	analogy.	

Question	answering	is	carried	out	with	the	following	basic	heuristics:			

1) Detecting	object	properties	via	part-whole	reasoning	and	base	domain	reasoning	

2) Reasoning	about	example	situations	with	qualitative	background	knowledge	

3) Using	concept	and	relation	hierarchies	to	estimate	semantic	similarity	of	statements	
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1.3 Preview	

Chapter	2	covers	the	theoretical	background	for	this	work	and	explains	the	systems	used	in	this	thesis.		

Chapter	3	provides	a	qualitative	analysis	of	the	analogies	in	the	FAR	guide.		Chapter	4	describes	my	

approach	for	interpreting	multimodal	instructional	analogies	and	Chapter	5	describes	my	approach	for	

answering	middle	school	science	questions	using	the	knowledge	captured	in	Chatper	4.		Chapter	6	

covers	related	work	in	analogical	reasoning,	multimodal	reasoning,	and	question	answering.		I	close	with	

a	general	discussion	and	suggestions	for	future	work.	

Chapter	2: Background	

2.1 Structure-Mapping	Engine	

The	structure	mapping	engine	is	a	computational	model	of	analogy	and	similarity	based	on	the	

structure-mapping	theory	of	analogy.		The	algorithm	has	been	described	in	detail	elsewhere	

(Falkenhainer	et	al.,	1989;	Forbus	et	al.,	1994),	but	here	I	describe	the	general	inputs	and	outputs	as	well	

as	how	constraints	and	analogy	control	predicates	are	used	in	this	task.		

	 The	structure-mapping	engine	(SME)	takes	as	input	two	structured	descriptions:	a	base	and	a	

target.		The	structured	descriptions	consist	of	expressions	that	describe	the	domain.		Given	a	base	and	a	

target,	SME	produces	one	or	more	mappings	between	them.		Each	mapping	has	a	set	of	

correspondences,	which	say	how	things	in	the	base	correspond	to	things	in	the	target,	a	structural	

evaluation	score,	which	is	an	estimate	of	match	quality	(i.e.	systematicity),	and	(optionally)	candidate	

inferences,	which	are	things	that	are	true	in	the	base	and	hypothesized	to	be	true	in	the	target.		There	

can	also	be	reverse	candidate	inferences,	which	are	things	that	are	true	in	the	target	and	hypothesized	

to	be	true	in	the	base.		Essentially,	candidate	inferences	(regular	or	reverse)	represent	differences	
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between	the	base	and	the	target.		They	have	the	potential	to	introduce	new	terms	via	analogy	skolems.		

Analogy	skolems	are	terms	that	exist	in	one	description,	but	not	the	other.					

	 SME	provides	optional	match	constraints	that	operate	as	advice	to	encode	task	demands.		

Partition	constraints	require	that	items	of	the	same	type	correspond	to	each	other	(e.g.	apples	to	apples	

and	oranges	to	oranges).		These	are	useful	for	literal	similarity	matches	where	types	or	surface	

attributes	matter.		Required	correspondences	are	constraints	on	individual	items	(e.g.	apple1	must	

correspond	to	apple2).		These	are	useful	in	situations	where	correspondences	are	given	explicitly,	as	is	

often	the	case	in	instructional	analogies.		Partition	constraints	and	required	correspondences	are	used	

the	interpretation	model	described	in	Chapter	4.	

	 SME	also	uses	a	vocabulary	of	analogy	control	predicates,	which	allow	for	certain	predicates	to	

be	ignored	or	for	certain	predicates	to	be	declared	as	non-atomic	functions.		A	non-atomic	function	is	a	

predicate	that	results	in	a	non-atomic	term,	which	is	statement	that	should	be	considered	a	single	term.		

For	example,	if	there	is	a	predicate,	LiquidFn,	that	takes	one	argument	and	denotes	the	liquid	form	of	

that	argument,	we	might	want	to	treat	facts	like,	(LiquidFn Nitrogen),	as	being	unique	terms.		

Declaring	LiquidFn	a	non-atomic	function	makes	that	happen.	

2.2 Cyc	

ResearchCyc	(Cyc)	is	a	large	scale	knowledge	base	(KB)	with	a	representational	language	called	CycL.1		

The	Cyc	KB	has	an	ontology	that	describes	concept	and	relational	hierarchies	that	can	be	useful	for	

reasoning.		In	Cyc,	concepts	are	represented	using	Collections,	which	are	like	sets.		Entities	are	instances	

or	members	of	collections.		For	example,	if	I	have	a	piece	of	fruit	in	my	hand,	that	piece	of	fruit	is	an	

																																																													
1	www.cyc.com	
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entity	that	belongs	to	the	collection	Fruit.		Microtheories	are	logical	environments	that	can	be	used	to	

control	reasoning.		For	example,	to	query	the	knowledge	about	a	fictional	world	in	Cyc,	one	must	restrict	

the	query	to	only	examine	facts	in	the	microtheory	that	represents	that	fictional	world.		Predicates	are	

used	to	form	statements	and	they	can	be	instance-level	or	type-level	predicates.		Instance-level	

predicates	operate	on	instances,	while	type-level	predicates	can	operate	on	collections	and	predicates.			

	

Rule	macro	predicate	examples Meaning	
(relationAllExists cityMayor City 

Person) 
All	cities	have	a	mayor.	

(relationAllExistsRange citizens City 
Person Many-Quant) 

All	cities	have	many	citizens.	

(relationAllExistsCount physicalParts 
Person Eye 2) 

All	people	have	2	eyes.	

(relationAllInstance citizens Person 
PlanetEarth) 

All	people	are	citizens	of	planet	Earth.	

(relationExistsAll doneBy 
(ControllingFn City) 
CityGovernment) 

All	city	governments	have	a	city	that	
they	control.	

(relationExistsRangeAll 
anatomicalParts Mammal Foot-
AnimalBodyPart AFew-Quant) 

All	mammals	have	a	few	feet.	

(relationExistsCountAll birthChild 
BirthEvent Person 1) 

Every	person	is	born	once.	

(relationExistsInstance 
temporallyCoexist Martian 
PlanetMars) 

Loosely:	There	are	Martians	on	Mars.	
Precisely:	There	exists	a	Martian	that	
temporally	coexists	with	the	planet	
Mars.	

(relationInstanceAll 
temporallyCoexist PlanetMars 
Martian) 

All	Martians	are	on	planet	Mars.	

(relationInstanceExists bordersOn 
NileRiver Country) 

There	are	countries	that	share	a	
border	with	the	Nile	river.	

(relationInstanceExistsRange citizens 
Tokyo-PrefectureJapan Person 
Millions-Quant) 

There	are	millions	of	Tokyo	citizens.	

(relationInstanceExistsCount 
presidentOfCountry 
UnitedStatesOfAmerica Person 1) 

There	is	one	president	of	the	US.	

(relationAll repeatedEvent Sunrise) Sunrises	repeat.	
(relationExists inProgressEvent 

Writing) 
There	is	writing	happening	right	now.	

	

Table	1:	Examples	of	statements	that	use	rule	macro	predicates	in	CycL	and	their	meanings	in	English.	
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	 CycL	has	a	class	of	type-level	predicates	that	expand	into	rules.		These	predicates	are	called	rule	

macro	predicates	(Table	1).		They	are	useful	for	expressing	general	rules	that	apply	to	an	entire	

collection.		Since	introductory	science	knowledge	often	contains	information	about	classes	of	things	or	

processes,	they	are	an	important	part	of	the	representational	system	used	for	this	thesis.			

	 Introductory	science	knowledge	also	includes	information	about	functions	and	behaviors.		These	

are	typically	represented	in	Cyc	as	events	or	situations	(i.e.	instances	of	the	collection	Event	and/or	

instances	of	the	collection	Situation).		When	an	action	or	event	is	described	in	Cyc,	it	is	described	using	

a	neo-Davidsonian	representation,	which	means	that	the	event	itself	is	an	entity	and	properties	of	that	

event	are	related	to	the	event	separately.		For	example,	the	sentence	“Jane	kicked	the	ball”	could	be	

described	using	a	three-argument	predicate	for	the	verb	“kick.”	

 (kicked Jane the-ball) 

However,	the	neo-Davidsonian	representation	would	look	like	this:	

 (isa kick123 KickingAnObject) 

 (doneBy kick123 Jane) 

 (objectActedOn kick123 the-ball) 

This	way	of	representing	the	event	is	more	flexible.		If	more	information	were	added,	all	that	is	needed	

is	one	more	statement,	rather	than	a	new	kick	predicate	with	another	argument	slot.		For	example,	

“Jane	kicked	the	ball	to	Bob”	could	be	represented	with	the	previous	three	statements	and	the	

following:	

 (toAgent kick123 Bob)  
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Neo-Davidsonian	representations	are	used	in	the	model	for	interpreting	instructional	analogies.	

	 Functional	predicates	are	predicates	that	denote	other	things	dynamically.		Collection	denoting	

functions	are	functional	predicates	that	denote	collections	do	not	already	exist	in	the	knowledge	base	or	

that	need	to	be	defined	compositionally.		For	example,	the	functional	predicate	

SubcollectionOfWithRelationToTypeFn	can	be	used	to	denote	subcollections	with	particular	relation	

to	other	collections.		To	denote	the	collection	of	events	where	a	ball	is	kicked,	we	can	use	this:	

 (SubcollectionOfWithRelationToTypeFn KickingAnObject objectActedOn Ball) 

This	term	denotes	the	collection	of	events	that	are	instances	of	KickingAnObject	and	are	related	to	an	

instance	of	Ball	via	objectActedOn.		To	say	that	a	particular	event,	kick123,	belongs	to	this	collection,	

we	could	use	this	statement:	

(isa kick123  

(SubcollectionOfWithRelationToTypeFn KickingAnObject objectActedOn Ball)) 

	

While	neo-Davidsonian	representations	are	useful	for	flexibly	representing	individual	events,	collection	

denoting	functions	are	useful	for	precisely	describing	collections	of	events.		Paired	with	rule	macro	

predicates,	collection	denoting	functions	can	be	useful	for	building	rules.		For	example,	to	say	that	all	

children	kick	balls,	we	could	use	this	statement:	

(relationExistsAll performedBy  

(SubcollectionOfWithRelationToTypeFn KickingAnObject objectActedOn Ball) 

HumanChild) 
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Collection	denoting	functions	and	rule	macro	predicates	are	both	used	in	this	system	to	represent	type	

level	knowledge.	

2.3 Qualitative	Reasoning	

Qualitative	Process	Theory	(QPT)	(Forbus,	1984)	is	a	representational	system	for	carving	up	continuous	

quantities	and	processes	into	qualitative	representations.		Continuous	quantities	include	things	like	age,	

height,	weight,	account	balance,	calories,	etc.		Each	of	these	quantities	can	have	a	numerical	value	

associated	with	them.		However,	we	often	reason	about	quantities	without	knowing	the	exact	numerical	

values	by	using	terms	like	“short”	or	“low-calorie.”		In	Cyc,	such	quantities	are	instances	of	the	collection	

ScalarInterval,	which	is	the	collection	of	things	that	can	be	ranked	on	some	scale.		This	includes	

quantities	like	temperature,	which	can	have	numerical	values,	and	quantities	like	happiness,	which	don’t	

have	numerical	values.			

In	QPT,	processes	cause	changes	in	quantities.		Processes	can	be	represented	using	model	

fragments	(Friedman	&	Forbus,	2011;	Klenk	&	Forbus,	2009),	which	represent	partial	information	about	

a	process	type.		Each	model	fragment	has	participants	(i.e.	the	entities	involved),	constraints	on	what	

can	be	involved,	conditions	for	the	process	to	actually	happen,	and	consequences	of	the	process.		Model	

fragments	can	also	represent	conceptual	or	physical	views	that	provide	a	perspective	on	a	situation.		

Such	model	fragments	are	not	processes,	so	while	they	may	involve	causal	relationships,	they	do	not	

directly	cause	quantities	to	increase	or	decrease.		The	consequences	of	model	fragments	typically	

include	causal	relationships,	ordinal	relationships,	or	correspondences	between	quantities.		

Causality	is	embedded	in	relationships	called	influences.		Direct	influences	describe	changes	to	

extensive	parameters,	e.g.	“A	growth	processes	directly	influences	weight.”		Using	QPT	syntax,	this	

statement	would	be	(I+ (WeightFn dog) (RateFn dog-growing)),	where	the	token	dog-growing	
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would	refer	to	the	process	of	the	dog	growing.		The	rate	of	the	growth	process	is	a	causal	antecedent	of	

the	weight	of	the	dog.		A	looser	form	of	causality	can	be	represented	with	indirect	influences,	which	can	

describe	changes	to	extensive	or	intensive	parameters	that	are	not	necessarily	additive.		Indirect	

influences	are	represented	by	predicates	for	positive	and	negative	qualitative	proportionalities,	denoted	

by	the	predicates	qprop	and	qprop-.		For	example,	in	the	winter,	the	higher	the	temperature,	the	

happier	I	am:		

(qprop (HappinessFn me) (TemperatureFn Chicago)) 

The	fact	that	this	sentence	is	qualified	with	“in	the	winter”	indicates	that	this	qualitative	proportionality	

could	be	a	consequence	to	a	model	fragment	describing	winter,	meaning	that	when	that	model	

fragment	is	active,	the	relationship	holds.	In	the	summer,	the	relationship	might	change	to:	

(qprop- (HappinessFn me) (TemperatureFn Chicago)) 

This	negative	qualitative	proportionality	indicates	that	I	am	happier	when	it	is	cooler.		As	is	the	case	with	

direct	influences,	the	second	argument	of	an	indirect	influence	is	the	cause	and	the	first	argument	is	the	

effect.		Correspondences	represent	points	of	equality	between	quantities.		Consider	the	following	

expression:	

(qpCorrespondence (PopulationFn GrantPark-Chicago) Zero                                                              

(TemperatureFn Chicago) Zero)) 

This	correspondence	means	that	when	the	temperature	in	Chicago	is	zero,	the	number	of	people	at	

Grant	Park	(which	is	outside)	is	zero.		Causal	influences	enable	a	qualitative	analysis	of	a	situation	in	

terms	of	what	quantities	are	changing.		Given	a	scenario	with	at	least	one	active	process,	the	scenario	

can	be	characterized	in	terms	of	what	quantities	are	increasing,	decreasing,	and	staying	the	same.		This	
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characterization	is	called	influence	resolution.			Qualitative	simulation	also	enables	limit	analysis,	which	

involves	the	prediction	of	future	states,	although	this	aspect	of	QPT	is	not	used	for	this	thesis.		QPT	is	

useful	for	supporting	inference	with	partial	information,	which	is	exactly	the	type	of	information	that	

exists	when	a	topic	is	first	being	learned.			

2.4 EANLU	

The	Explanation	Agent	Natural	Language	Understanding	system	(EANLU)	(Tomai	&	Forbus,	2009)	

produces	semantic	representations	for	simplified	natural	language	text.		EANLU	takes	a	pragmatic	

approach	to	natural	language	understanding.		Semantic	interpretation	of	text	is	made	tractable	by	using	

sentences	with	simplified	syntax.		In	other	words,	the	goal	is	not	to	have	complete	coverage	of	natural	

language	inputs,	but	rather	to	have	very	broad	coverage	of	the	knowledge	that	can	be	expressed	to	the	

system	using	simple	sentences.		For	each	sentence	EANLU	processes,	it	generates	choice	sets	to	

represent	the	possible	interpretation	choices	that	can	be	made.		Several	heuristics	for	making	semantic	

interpretation	choices	are	built	in	to	EANLU.		For	this	thesis,	semantic	choices	are	selected	using	two	

simple	heuristics:	information	gain	and	favored	context.		These	heuristics	and	the	way	EANLU	is	used	to	

interpret	multimodal	instructional	analogies	are	described	in	section	4.2.3.					

2.5 CogSketch	

CogSketch	is	a	domain-independent	sketch	understanding	system	(Forbus	et	al.,	2011).	Sketch	

understanding	refers	to	the	process	of	using	spatial	reasoning	to	interpret	sketches,	independent	of	

sketch	recognition.		Sketch	understanding	is	intended	to	cover	the	types	of	sketches	that	are	qualitative,	

abstract,	and	may	not	necessarily	reflect	realistic	images.		CogSketch	achieves	this	by	using	qualitative	

spatial	reasoning	over	ink	that	is	manually	segmented	and	labeled	by	the	user.		In	CogSketch,	the	basic	

building	blocks	of	a	sketch	are	called	glyphs.		To	draw	a	glyph,	the	user	draws	ink	using	a	mouse	or	stylus	
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and	tells	the	software	when	the	glyph	is	done	by	clicking	a	Finish	Glyph	button.		This	means	that	the	user	

manually	segments	ink	into	meaningful	objects.		Ink	editing	tools	allow	the	user	to	merge	and	re-

segment	ink	as	they	draw.		Grouping	tools	also	allow	the	user	to	group	conceptual	items	together	(e.g.	

two	wheels	and	a	frame	can	be	grouped	together	to	represent	a	bicycle).		The	user	can	also	provide	

conceptual	labels	for	glyphs	using	collections	and	relations	from	the	Cyc	knowledge	base	so	that	the	

software	has	a	model	of	the	user’s	intent	that	is	tied	to	the	Cyc	ontology.		By	labeling	an	individual	glyph	

with	a	collection	from	Cyc,	the	user	is	indicating	that	they	have	drawn	an	instance	of	that	collection.		For	

example,	in	Figure	3,	the	innermost	circle	represents	a	cell’s	nucleus.		To	convey	this	to	CogSketch,	the	

user	would	draw	the	nucleus,	click	Finish	Glyph	to	indicate	that	the	glyph	is	done,	and	label	it	with	the	

collection	CellNucleus	from	the	Cyc	knowledge	base.		Additionally,	the	parts	of	the	cell	in	Figure	3	can	

be	grouped	together	by	the	user.		By	labeling	the	grouped	glyphs	with	the	Cyc	collection	Cell,	the	user	

indicates	that,	when	grouped	together,	the	glyphs	represent	an	individual	cell.		Although	this	approach	

requires	extra	drawing	and	labeling	effort,	it	has	two	advantages	over	recognition	of	raw	ink.		The	first	is	

that	it	avoids	segmentation	and	recognition	errors	because	the	user	explicitly	tells	the	software	how	to	

group	ink	and	what	they	want	the	ink	to	represent.		The	second	is	that	this	draw-and-label	interface	is	

amenable	to	educational	settings	because	students	are	required	to	label	sketches	and	explicitly	provide	

their	(possibly	incorrect)	interpretation	of	what	they	have	drawn.		Also,	ink	recognition	without	labeling	

would	not	work	across	multiple	domains,	since	the	mapping	from	shapes	to	concepts	is	many	to	many.		

It	is	especially	problematic	when	a	new	domain	is	being	introduced,	since	training	recognizers	requires	

many	examples.			

CogSketch	automatically	generates	qualitative	spatial	representations	for	what	is	drawn	in	a	

sketch.		Topological	relations	(e.g.	intersection,	containment)	and	positional	relations	(e.g.	above,	right	

of)	are	automatically	computed	between	adjacent	glyphs.		Spatial	relations	between	nonadjacent	glyphs	
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can	be	computed	on-demand.		The	conceptual	labels	provided	by	the	user	are	also	used	by	CogSketch	so	

that	spatial	and	conceptual	information	exist	in	the	same	reasoning	environment	(i.e.	in	the	same	

microtheory).		CogSketch	sketches	can	(optionally)	consist	of	multiple	subsketches,	which	are	useful	for	

representing	individual	states	in	a	sketch.		Each	subsketch	has	its	own	microtheory	so	that	things	about	

the	same	object	can	be	true	in	one	subsketch/state	and	not	true	in	another.			

	

For	interpreting	the	visual	portion	of	instructional	analogies,	I	created	sketches	using	CogSketch.		

Each	sketch	was	manually	organized	into	individual	glyphs,	and	labeled	with	concepts	from	the	Cyc	

knowledge	base.		When	objects	were	depicted	as	individual	parts	of	another	object,	glyph	grouping	was	

	 	

Figure	3:	An	example	sketch	with	partial	representations	from	CogSketch.		Colors	indicate	separate	glyphs	drawn	
by	the	user.		User-provided	labels	from	the	Cyc	knowledge	base	give	explicit	conceptual	information	about	the	
glyphs.		CogSketch	does	not	perform	sketch	recognition	of	the	ink.		Instead,	it	relies	on	the	labels	provided	by	the	
user.		In	this	example,	the	different	colored	glyphs	are	all	grouped	together	and	labeled	again,	allowing	CogSketch	
to	represent	each	individual	part	with	its	own	label	(e.g.	CellNucleus),	as	well	as	the	group	of	glyphs	with	another	
label	(i.e.	Cell).				
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used	to	represent	part-whole	relationships.		In	other	words,	CogSketch	did	not	perform	any	sketch	

recognition.		Rather,	it	generated	qualitative	spatial	representations	for	conceptually	labeled	glyphs.							

2.6 Companions	

The	Companion	Cognitive	Architecture	(Forbus	et	al.,	2009)	is	based	on	the	idea	that	intelligent	systems	

are	social	organisms	that	collaborate	with	others	and	learn	over	extended	periods	of	time	(e.g.	from	

experience).		In	a	Companion,	analogy	is	a	central	reasoning	mechanism.		Each	Companion	is	capable	of	

using	multiple	modes	of	interaction.		It	has	a	natural	language	interface	that	is	built	upon	EANLU	and	a	

sketching	interface	that	uses	CogSketch.		I	use	the	Companion	cognitive	architecture	to	model	the	

interpretation	of	multimodal	instructional	analogies	and	to	answer	multiple	choice	questions.		

Instructional	analogy	interpretation	is	coordinated	by	HTN	plans.		Question	answering	strategies	are	

represented	by	a	cost-based	AND/OR	tree,	where	AND	nodes	represent	subgoals	for	solving	a	question	

(i.e.	they	must	all	succeed)	and	OR	nodes	represent	different	strategies	for	solving	a	single	question	(i.e.	

only	one	must	succeed).		There	are	costs	associated	with	OR	nodes,	so	that	some	strategies	can	be	

prioritized	over	others.	 	

Chapter	3: Characterization	of	Instructional	Analogies	

In	general,	the	goal	of	instructional	analogies	is	to	build	knowledge	about	a	new	topic.		However,	this	is	

achieved	in	many	different	ways.		Some	analogies	highlight	functional	similarities	to	help	novices	

understand	complex	phenomena.		Other	analogies	simply	provide	a	physical	model	for	something	that	is	

not	directly	observable.		In	this	chapter,	I	provide	a	qualitative	analysis	of	the	reasoning	requirements	of	

instructional	analogies	found	in	a	guide	for	in-service	teachers.			
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3.1 The	FAR	Guide	

The	FAR	guide	(Harrison	&	Coll,	2007)	contains	analogies	used	for	teaching	middle	school	and	secondary	

school	science,	collected	from	the	educational	literature,	with	recommendations	for	how	to	use	them	

effectively	in	the	classroom.		The	analogies	cover	several	topics	over	four	domains:	Biology	(12),	

Chemistry	(13),	Earth	and	Space	Science	(10),	and	Physics	(14).			

Each	analogy	uses	a	common	sense	domain,	topic,	or	physical	model	to	describe	a	science	topic.	The	

basic	goal	is	to	get	the	learner	to	transfer	their	knowledge	about	everyday	situations	to	their	knowledge	

about	science.		However,	the	analogies	vary	in	terms	of	what	similarities	should	be	attended	to	and	

what	types	of	inferences	should	be	made.		They	also	vary	in	what	kind	of	spatial	representations	are	

associated	with	them.		Although	similarities	and	differences	are	often	explicitly	stated	in	each	analogy,	

there	is	often	background	knowledge	that	the	learner	is	expected	to	use.		The	following	sections	provide	

a	qualitative	analysis	of	these	properties,	which	provides	insight	into	what	the	reasoning	requirements	

are	for	interpretation.	

3.2 Focused	Alignment	and	Inference	

As	others	have	noted	(Spiro	et	al.,	1989),	analogies	can	sometimes	lead	to	inaccurate	conclusions.		The	

authors	of	the	FAR	guide	(and	other	guides	in	the	education	literature)	agree	with	this	caveat,	and	

therefore	recommend	that	teachers	explicitly	identify	individual	similarities	and	differences.		This	is	

especially	important	for	cross-domain	analogies,	where	there	are	many	irrelevant	similarities	and	

differences	that	can	distract	students	or	lead	them	to	incorrect	conclusions.		As	a	result,	the	reasoning	

goals	and	target	knowledge	of	an	analogy	determines	what	similarities	and	differences	are	described.			

Table	2	shows	the	number	of	analogies	in	the	FAR	that	belong	to	different	categories	of	reasoning	goals.		

Out	of	the	49	analogies	in	the	FAR	guide,	each	generally	fit	into	one,	or	more	of	these	categories:	
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1) Analogies	about	functions,	e.g.	providing	energy,	building	something	

These	analogies	describe	functions	or	behaviors	in	terms	of	known	phenomena.		For	example,	in	the	

analogy	a	cell	is	like	a	city,	parts	of	the	city	are	compared	to	parts	of	the	cell	because	they	have	

similar	functions.		Power	stations	are	like	mitochondria	because	they	both	provide	energy.		

Construction	companies	are	like	ribosomes	because	they	both	build	things:	homes	and	proteins,	

respectively.					

2) Analogies	about	physical	properties,	e.g.	containment,	relative	size	

These	analogies	describe	relative	size,	shape,	or	physical	configurations.		For	example,	in	the	analogy	

a	cell	is	like	planet	Earth,	parts	of	the	planet	are	compared	to	parts	of	the	cell	to	illustrate	relative	

size	and	proper	part	relations.		A	cell	is	already	small,	but	relative	to	chromosomes,	the	cell	is	very	

large.		Similarly,	the	planet	is	much	larger	than	an	individual	town	or	city.			

3) Physical	model	analogies	

These	types	of	analogies	are	more	common	in	domains	that	aim	to	explain	processes	or	things	at	a	

level	of	detail	that	cannot	be	directly	observed.		For	example,	analogies	about	electricity	use	

physical	models	to	express	the	functions	of	the	parts	of	a	simple	series	circuit	and	the	causal	

relationships	between	quantities	(e.g.	voltage	and	current	flow).		It	is	not	the	case	that	electricity	

cannot	be	observed	at	all,	since	one	could	build	a	circuit	and	observe	its	behavior.		However,	the	

explanation	for	how	that	artifact	works	is	initially	dependent	on	the	physical	properties	of	a	

different	process	where	individual	behaviors	are	more	directly	observable.		Students	do	not	see	

electricity	flowing,	but	they	have	seen	water	flow.			
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	 Most	of	the	instructional	analogies	in	the	FAR	guide	involve	similarities	in	functions	or	

behaviors.		This	is	not	surprising	because	cross-domain	analogies	usually	lack	surface	similarity.		In	

biology,	for	example,	protein	synthesis	is	described	as	following	a	master	plan	to	build	a	house.		The	

focus	of	this	analogy	is	not	on	surface	characteristics.		Instead,	the	analogy	focuses	on	the	roles	that	

DNA,	the	cell	nucleus,	and	amino	acids	play	in	building	proteins.		Students	familiar	with	the	notion	of	

blueprints	and	master	plans	can	use	that	knowledge	to	interpret	DNA	as	instructions	for	building	

proteins.		Another	example	is	in	physics,	where	conservation	of	electric	current	in	a	simple	series	circuit	

is	explained	using	an	analogy	to	a	passenger	train.		In	a	simple	series	circuit,	with	a	battery	and	a	light	

bulb,	the	conversion	of	energy	by	the	battery	and	light	bulb	are	represented	by	passengers	entering	and	

exiting	the	train.		The	train	continues	to	move	so	long	as	it	is	in	a	closed	track,	which	mimics	current	in	a	

closed	circuit.		In	this	analogy,	it’s	not	the	physical	configuration	that	matters,	but	rather	the	

requirements	for	movement	(i.e.	flow)	in	a	circuit.		

	 Other	analogies	focus	on	similarities	in	relative	size,	structure,	and/or	shape.		These	analogies	

are	used	to	deal	with	the	difficulties	in	observing	quantities	at	very	large	or	very	small	scales.		For	

example,	to	help	students	understand	Avogadro’s	number,	the	FAR	guide	describes	an	analogy	to	grains	

of	rice	that	fill	the	United	States	or	oranges	that	fill	the	planet.		This	is	intended	to	help	students	

Topic	 Functional	
Similarities	

Physical	
Similarities	

Physical	
Model	

Total	

Biology	 8	 3	 2	 12	
Chemistry	 7	 8	 4	 13	
Earth/Space	Science	 8	 8	 6	 10	
Physics	 14	 2	 9	 14	
Total	 37	 21	 21	 49	
	
Table	2:	Number	of	analogies	in	the	FAR	guide	that	involve	reasoning	about	functional	similarities,	physical	
similarities,	and	physical	models.		Note	that	the	three	categories	are	not	mutually	exclusive.	
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understand	how	large	Avogadro’s	number	is,	and	to	be	able	to	conceptualize	a	mole	as	a	single	unit	of	

something.		Similarly,	to	understand	the	length	of	the	human	genome,	instructors	may	also	use	an	

analogy	to	a	very	long	road	trip.		In	this	analogy,	regions	along	the	long	trip	(e.g.	states)	represent	

chromosomes.		Monotonous	parts	of	the	trip	(e.g.	long	stretches	of	empty	land)	represent	repetitive	

DNA	that	does	not	code	for	proteins.		Interesting	parts,	like	busy	cities,	represent	genes	that	play	an	

important	role	in	protein	synthesis.		This	analogy	is	intended	to	help	students	understand	that	there	are	

varying	parts	of	the	genome,	and	that	most	of	it	consists	of	DNA	that	does	not	code	for	proteins.		

Switching	between	two	very	different	scales	is	intended	to	help	students	understand	the	relative	

magnitude	of	things	they	cannot	directly	observe.					

	 Another	characteristic	of	some	analogies	is	that	they	use	real	physical	models	or	demonstrations	

to	illustrate	a	new	topic.		Sometimes	these	analogies	are	enriched	versions	of	analogies	that	convey	

similarities	in	size,	shape,	or	structure.		Although	other	times,	there	is	little	physical	similarity	and	the	

focus	is	on	functions	and	behaviors.		For	example,	an	analogy	can	be	used	to	teach	students	about	the	

interdependence	of	ecosystems	and	food	webs.		By	having	students	physically	connect	to	each	other	

with	string,	they	can	understand	how	disturbances	in	one	area	can	affect	many	others.		The	connections	

between	students	bear	no	physical	resemblance	to	real	ecosystems,	but	the	goal	is	to	have	them	

transfer	their	observations	about	movement	and	stability	to	the	stability	of	ecosystems.		On	the	other	

hand,	a	more	physically	focused	analogy	with	a	physical	demonstration	is	used	to	teach	students	about	

the	geologic	record	of	the	earth.		This	analogy	works	by	having	students	create	a	timeline	in	real	space	

to	illustrate	the	large	distances	(i.e.	times)	between,	for	example,	the	extinction	of	dinosaurs	and	the	

present	era.		Like	the	genome	analogy,	the	geologic	record	analogy	illustrates	the	relative	magnitude	of	

different	spans	of	time,	but	it	achieves	this	with	a	real	physical	model.		
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Note	that	these	categories	are	not	mutually	exclusive.		Some	analogies	involve	similar	physical	

features	as	well	as	similar	functions.		For	example,	in	earth	science,	layers	of	sponges	are	used	to	model	

salinity	in	soil	(Figure	4).		Using	water,	salt,	and	a	heat	source,	water	evaporation	and	salt	crystal	

formation	can	be	observed.		This	allows	students	to	understand	dryland	salinity	in	terms	of	an	observed	

physical	model.		The	physical	model	is	aimed	at	illustrating	that	the	heat	causes	water	evaporation,	

which	leaves	behind	salt	crystals.	However,	these	causal	relationships	are	also	tied	to	spatial	

information.		The	water	rises	to	dry	layers	that	are	above	wet	ones.		The	water	table	is	at	the	lowest	

level	of	sponges.		The	physical	configuration	of	the	sponges	also	reflects	the	relative	physical	structure	

of	the	layers	of	soil.		For	these	reasons,	this	analogy	involves	both	functional	and	physical	similarities.		

This	analogy	also	happens	to	achieve	this	through	the	use	of	a	real	physical	demonstration.	

	

	

Figure	4:	An	example	of	an	analogy	from	the	FAR	guide	(Harrison	&	Coll,	2007,	p.	234).		This	analogy	expresses	
similarities	in	functions/behaviors	and	spatial	relations	through	a	physical	model.			
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The	wide	range	of	analogies	found	in	the	FAR	guide	illustrate	that	they	can	be	characterized	by	

multiple	overlapping	categories.		The	reasoning	goals	of	these	analogies	indicate	that	a	model	of	

interpretation	needs	to	represent	functional	and	physical	properties	at	a	level	of	abstraction	that	

transcends	domain.		In	other	words,	even	though	the	cross-domain	functional	and	physical	properties	

are	not	literally	the	same,	they	need	to	be	represented	as	if	they	are.		This	is	similar	to	the	way	novices	

represent	this	information	before	they	learn	the	domain’s	technical	vocabulary.		For	example,	

mitochondria	are	the	sites	where	phosphate	molecules	bond	with	adenosine	diphosphate	(ADP)	to	

create	adenosine	triphosphate	(ATP),	which	is	the	most	common	source	of	cellular	energy.		Rather	than	

representing	this	process	at	this	level	of	detail,	it	can	simply	be	represented	as	mitochondria	providing	

energy.		Similarly,	one	could	go	into	greater	detail	about	how	power	stations	generate	electricity,	but	

instead,	saying	that	power	stations	provide	energy	is	more	amenable	to	a	match	with	our	description	of	

mitochondria.		Language	plays	a	critical	role	in	determining	what	level	of	abstraction	is	used	and	a	

successful	interpretation	must	make	this	determination	correctly.		

3.3 Spatial	Representations	

Most	of	the	analogies	in	the	FAR	guide	are	accompanied	by	pictures	or	spatial	representations	of	some	

kind	(Table	3).		For	the	purposes	of	this	investigation,	I	define	spatial	representations	to	be	any	non-

linguistic	input	that	provides	spatial	information.		This	includes	photos,	sketches,	diagrams,	and	physical	

demonstrations	where	the	learner	visually	observes	something.		Of	the	49	analogies	in	the	FAR	guide,	45	

had	a	spatial	representation	of	some	kind	associated	with	it.		In	most	cases,	the	spatial	representation	

depicted	the	base	domain	(44).		In	fewer	cases	(13),	there	was	a	spatial	representation	for	the	target.		In	

all	but	one	of	the	analogies,	anytime	there	was	a	spatial	representation	for	the	target	there	was	also	one	

for	the	base.			
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Although	there	were	some	analogies	that	were	accompanied	with	pictures,	the	vast	majority	(39	out	of	

45)	were	presented	with	either	diagrams	or	a	physical	demonstration	of	some	kind.		The	presence	of	

diagrams	indicates	the	need	to	derive	conceptual	information	from	abstract	symbols	like	arrows	and	

topological	relations	like	containment.		For	example,	the	diagram	for	the	analogy	between	ATP	and	a	

battery	uses	arrows	to	indicate	the	transformation	of	ATP	to	ADP	and	vice	versa.		The	presence	of	

physical	demonstrations	indicates	the	need	to	understand	physical	processes	or	situations	in	a	way	that	

supports	the	acquisition	of	qualitative	knowledge.		For	example,	in	the	analogy	for	describing	

interdependence	in	the	ecosystem,	students	need	to	understand	that	connections	between	students	

indicate	interdependence	and	that	just	as	in	the	physical	model,	a	change	in	the	ecosystem	ripples	

through	to	impact	connected	species.		The	presence	and	use	of	spatial	representations	to	convey	

conceptual	information	indicates	that	spatial	reasoning	is	an	important	aid	in	understanding	these	

analogies.		The	experiments	in	Chapter	4	investigate	how	often	the	spatial	representations	are	actually	

required	for	interpretation.	

3.4 Background	Knowledge	

Instructional	analogies	vary	in	how	they	are	presented	and	in	how	much	implicit	background	knowledge	

is	used	by	the	learner.		Implicit	background	knowledge	is	knowledge	about	the	base	domain	that	isn’t	

explicitly	stated	or	shown	in	the	presentation	of	the	analogy.		All	analogies	in	the	FAR	guide	are	

Topic	 Base	Spatial	
Representation	

Target	Spatial	
Representation	

No	Spatial	
Representation	

Biology	 10	 6	 2	
Chemistry	 11	 4	 1	
Earth/Space	Science	 10	 0	 0	
Physics	 13	 3	 1	
Total	 44	 13	 4	

	
Table	3:	Number	of	analogies	in	the	FAR	guide	that	use	spatial	representations.	
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presented	in	table	format,	so	the	many	of	the	important	correspondences	are	usually	explicit.		However,	

even	this	type	of	explicit	representation	can	leave	out	important	information.		Take	for	example	the	

analogy	between	ATP	and	batteries	in	Table	4	and	the	analogy	between	the	cell	and	Earth	in	Table	5.			

	

	

	 The	analogy	used	to	explain	ATP	is	much	more	detailed	and	contains	more	technical	language.		

The	primary	goal	is	to	understand	how	ATP	provides	energy	for	various	cell	activities	and	that	it	can	be	

used	repeatedly.		Understanding	this	process	in	terms	of	batteries	can	be	a	useful	foundation,	but	the	

same	information	is	also	given	explicitly	in	the	text	of	the	analogy.		This	is	not	to	say	that	the	base	

domain	of	batteries	serves	no	purpose,	but	it	does	demonstrate	that	sometimes	explanations	of	the	

Rechargeable	Battery	 ATP	and	ADP	
A	charged	battery	is	energy	sufficient.	 ATP	is	energy	sufficient.	
Batteries	move	energy	to	where	it’s	needed	
to	power	an	electronic	device.	

ATP	is	moved	to	where	energy	is	needed	in	
the	cell.	

A	charged	battery	converts	into	a	flat	
battery	when	energy	is	used.	

ATP	converts	to	ADP	when	energy	is	used.	

A	rechargeable	battery	can	be	used	over	
and	over	again.	

ATP	can	be	used	over	and	over	again:		
ADP	+	P	à	ATP		

A	battery	recharger	is	the	site	where	
energy	is	reintroduced	to	the	flat	batteries	

Mitochondria	are	the	sites	where	energy	is	
used	to	change	ADP	to	ATP.	

Recharged	batteries	can	be	used	for	a	
variety	of	machines	for	a	variety	of	tasks.	

ATP	can	be	used	at	many	sites	in	the	cell	
(ribosomes	or	cell	membrane)	for	tasks	
such	as	protein	production	or	active	
transport.	

	
Table	4:	Analogy	between	ATP/ADP	and	a	rechargeable	battery,	Harrison	&	Coll	(2007),	p.	94	

The	Earth	to	a	street	address	 The	cell	to	a	codon	
The	Earth	 A	cell	
A	continent	 The	cell	nucleus	
A	state	 A	chromosome	
A	city	 Chromosomal	DNA	fragment	
Street	Address	 Codon	
	
Table	5:	Analogy	used	to	explain	the	relative	size	of	cells	and	some	of	their	parts,	Harrison	&	Coll	(2007),	p.	118	
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base	domain	are	included	explicitly	with	the	analogy.		These	statements	serve	as	indicators	for	how	the	

mapping	between	the	two	domains	should	work.		In	contrast,	the	cell/earth	analogy	in	Table	5	only	lists	

correspondences	between	entities.		It	is	much	less	detailed.		The	purpose	of	this	analogy	is	to	

understand	the	relative	size	of	the	cell	and	its	parts,	even	though	size	and	part-whole	relationships	are	

not	explicit	in	the	language.		This	indicates	that	the	learner	is	expected	to	fill	in	the	gaps	with	

background	knowledge	(and	visual	information	if	there	is	any).		As	with	spatial	information,	experiments	

in	Chapter	4	provide	evidence	that	background	knowledge	does	impact	interpretation.	 	

3.5 Target	Knowledge	

The	target	knowledge	for	instructional	analogies	at	this	age	level	(i.e.	middle	school)	is	qualitative.		

Specific	technical,	quantitative	information	is	rarely	addressed	in	these	analogies.		Analogies	that	focus	

on	functional	or	behavioral	similarities	rely	on	qualitative	representations	and	abstract	(sometimes	

metaphorical)	language.		Analogies	that	focus	on	physical	similarities	have	to	do	with	relative,	not	

absolute,	size	and	structure.		Using	the	mitochondria	and	power	station	example	from	earlier,	the	

production	of	energy	is	described	as	an	act	of	making	something	available	to	the	cell,	rather	than	a	

chemical	reaction	that	creates	ATP	molecules.		In	another	analogy,	homeostasis	is	compared	to	walking	

up	a	down	escalator.		The	speed	of	the	escalator	going	down	and	the	speed	of	the	person	going	up	must	

be	equal	in	order	to	maintain	homeostasis.		The	quantitative	values	of	those	speeds	and	the	resulting	

body	temperature	are	not	communicated	in	the	analogy.		Instead,	it	is	communicated	that	the	speed	of	

the	escalator	has	a	negative	influence	on	the	body’s	temperature	and	the	speed	of	the	person	has	a	

positive	influence	on	the	body’s	temperature.		These	qualitative	relationships	convey	the	meaning	of	
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this	analogy.		The	only	quantitative	value	that	is	given	is	the	normal	body	temperature	of	the	human	

body,	because	it	represents	boundary	condition	between	qualitatively	different	states	(i.e.	hyperthermia	

and	hypothermia).		In	the	cell/earth	analogy	(Table	5),	the	cell	and	its	parts	are	compared	to	the	Earth	

and	its	parts	to	convey	the	very	large	size	differences	between	small	parts	and	big	parts.		However,	

quantities	are	only	used	to	indicate	that	there	are	many	sub	parts	in	both	domains.		The	actual	

cardinality	values	are	not	used,	and	for	good	reason,	since	using	those	values	might	bring	a	student	to	

conclude	that	every	cell	has	six	or	seven	nuclei.		In	all	cases,	things	that	are	explicitly	mentioned	in	the	

analogy	provide	clues	as	to	what	is	important.		However,	because	implicit	background	knowledge	is	

sometimes	required,	just	because	something	isn’t	explicitly	mentioned,	does	not	mean	it	is	unimportant.				

The	target	knowledge	for	instructional	analogies	is	intended	to	be	general	so	that	it	can	be	applied	

to	new	situations	or	domain	instances.		This	presents	a	challenge	for	AI	systems	attempting	to	learn	

from	these	analogies	because	the	analogies	do	not	explicitly	identify	which	information	is	general	and	

which	information	is	incidental.		This	is	a	known	problem	in	natural	language	understanding,	referred	to	

as	the	problem	of	generics	(Leslie,	2008),	where	statements	about	particular	things	may	be	intended	to	

apply	to	all	(or	most)	other	things	of	the	same	kind.		For	example,	given	a	diagram	that	depicts	an	

enzyme,	the	analogy	may	express,	in	language,	that	the	enzyme	has	an	active	site.		Despite	the	use	of	

the	definite	article,	the,	the	fact	that	the	enzyme	has	an	active	site	is	intended	to	be	understood	as	a	
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property	of	all	enzymes.		Successfully	interpreting	these	analogies	depends	on	knowing	how	to	

generalize	certain	parts	of	the	analogy,	and	knowing	which	parts	to	generalize.			

Chapter	4: Interpretation	of	Multimodal	Instructional	Analogies	

Building	software	that	can	understand	instructional	analogies	has	two	potential	benefits:	knowledge	

capture	and	education.		In	this	chapter	I	describe	my	approach	for	building	a	system	that	can	

understand	multimodal	instructional	analogies,	using	examples	from	the	FAR	guide.			

4.1 Problem	

There	are	several	challenges	in	building	an	algorithm	for	interpreting	multimodal	instructional	analogies.		

These	challenges	overlap	with	the	reasoning	requirements	identified	in	Chapter	3:	focused	alignment,	

spatial	reasoning,	background	knowledge,	and	qualitative/type-level	representations.		As	shown	in	

Chapter	3,	instructional	analogies	often	consist	of	natural	language	and	visual	representations.		

Interpreting	these	two	sources	of	information	independently	(including	natural	language	processing	and	

spatial	reasoning)	is	a	challenge,	as	is	combining	them	in	a	meaningful	way.		Information	about	the	base	

and	target	domains	is	often	interspersed	and	it	is	up	to	the	reader	to	figure	out	which	information	

describes	the	base	domain	and	which	information	describes	the	target.		People	also	bring	background	

information	into	the	foreground	so	that	it	can	be	used	in	the	analogy.		This	allows	them	to	go	beyond	

what	is	explicitly	stated.		Using	qualitative	and/or	type-level	knowledge	enables	individuals	to	generalize	

the	knowledge	being	described	in	an	individual	analogy	to	an	entire	concept	or	topic.		Building	this	

ability	into	an	instructional	analogy	learning	system	would	enable	it	to	make	inferences	about	types	of	

things	rather	than	individual	examples.		There	is	also	the	challenge	of	building	the	analogy	itself.		In	this	

thesis,	I	use	the	structure-mapping	engine	to	build	mappings	with	constraints	that	are	guided	by	the	
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types	of	cross-domain	analogies	found	in	the	FAR	guide.		Lastly,	once	a	mapping	is	created	via	structure-

mapping,	inferences	need	to	be	evaluated	to	determine	which	ones	can	be	accepted	as	correct.									

	 There	is	no	single	way	to	interpret	an	instructional	analogy.		Different	approaches	can	vary	with	

respect	to	modality,	level	of	human-computer	interaction,	and	level	of	incremental	reasoning.		I	chose	

to	build	a	system	that	analyzed	simplified	English	text	and	a	CogSketch	sketch	file	to	build	qualitative	

knowledge	without	human	intervention.		I	chose	this	approach	for	two	reasons.		The	first	reason	is	an	

assumption	that	learning	independently	represents	the	most	basic	way	to	illustrate	the	effectiveness	of	

a	learning	system.		That	is,	if	a	system	can	learn	a	topic	independently,	that	provides	the	strongest	

evidence	that	its	learning	approach	is	sufficient.		The	second	reason	is	that	excluding	human	

intervention	during	the	learning	process	could	reveal	the	obstacles	to	building	independent	learning	by	

reading	systems	that	can	make	use	of	instructional	analogies	found	in	textbooks	and	online	sources.		

Points	of	failure	provide	insight	into	how	the	learning	approach	could	be	improved,	either	through	

improved	sketch	and/or	natural	language	understanding	or	through	human	intervention.			

4.2 Approach	

The	general	approach	for	interpretation	is	summarized	in	Figure	5.	As	a	testbed	for	this	problem,	I	

gathered	analogies	from	the	FAR	guide	used	to	describe	topics	in	biology	(9)	and	electricity	(2).		Each	

analogy	consists	of	natural	language	text	describing	similarities	and	differences.		Most	analogies	also	

consist	of	some	kind	of	spatial	representation	(either	a	picture	or	diagram).		Each	analogy	was	manually	

adapted	from	its	original	form	to	simplified	English	and	a	CogSketch	sketch.		The	interpretation	model	

takes	as	input	a	text	file	and	a	sketch	file,	and	produces	symbolic	knowledge	to	represent	the	analogy	

described	in	those	files	and	information	about	the	newly	learned	target	domain.		The	interpretation	

process	occurs	in	five	steps:	sketch	interpretation,	text	interpretation,	multimodal	integration,	case	
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extraction,	and	mapping.		Each	of	these	steps	is	outlined	below,	after	a	description	of	the	background	

knowledge	that	is	given	to	the	system	independent	of	the	individual	analogies.	

	

4.2.1. Background	Knowledge	

As	illustrated	in	Chapter	3,	instructional	analogies	depend	on	background	knowledge	about	everyday	

concepts	or	experiences.		This	general	knowledge	can	be	represented	using	type-level	rule	macro	

predicates	in	Cyc	and	model	fragments.		Cyc	has	many	rule	macro	predicates	built	in	(examples	shown	in	

Table	1).		However,	out	of	the	box,	they	do	not	provide	sufficient	coverage	for	the	types	of	basic	

	

Figure	5:	Overview	of	the	system.		The	input	to	the	model	is	a	sketch	(i.e.	CogSketch	sketch	file)	and	a	text	file	
with	a	simplified	English	description	of	the	analogy.		Light	blue	items	represent	systems	or	knowledge	sources	
that	pre-date	this	thesis.		Dark	blue	items	indicate	new	techniques	or	knowledge	sources	developed	for	this	
thesis.	
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knowledge	that	were	relied	upon	for	the	instructional	analogies	in	the	FAR	guide.		To	supplement	

existing	knowledge	in	Cyc,	rule	macro	predicates	like	the	ones	shown	in	Table	1	were	manually	written	

and	added	to	the	knowledge	base.		All	of	the	rule	macro	predicate	statements	captured	knowledge	

about	the	base	domain	only.		For	example,	in	an	analogy	that	compares	a	cell	to	a	city,	background	

knowledge	about	cities	(e.g.	that	all	cities	have	mayors)	is	imported	into	the	system’s	interpretation	of	

the	analogy,	even	though	such	knowledge	may	not	be	explicitly	stated.		The	background	knowledge	

statements	do	not	represent	rules	that	are	universally	true.		That	is,	it	is	possible	that	there	are	cities	

without	mayors,	but	for	the	purposes	of	interpreting	science	analogies,	these	statements	are	accepted	

as	part	of	the	basic	knowledge	that	is	assumed	to	be	known	by	the	learner.			

	 The	second	source	of	background	knowledge	was	represented	with	model	fragments,	which	are	

useful	for	representing	commonsense	knowledge	about	processes	and	scenarios.		As	was	the	case	for	

rule	macro	predicates,	model	fragments	were	only	used	to	represent	knowledge	in	the	base	domain.		

Model	formulation	has	been	used	previously	with	sketches	(Chang	et	al.,	2014;	Klenk	et	al.,	2011),	and	I	

extended	the	2-dimensional	mechanics	domain	theories	in	Chang	et	al.	(2014)	with	those	described	in	

Table	6.		The	analogies	in	the	FAR	guide	did	not	always	involve	qualitative	processes	and	quantities,	but	

when	they	did,	the	model	fragment	definitions	in	Table	6	were	needed	to	capture	the	phenomena	being	

described.		For	example,	the	analogy	depicted	in	Figure	7	required	a	very	specific	type	of	situation:	

walking	up	an	escalator	that	is	moving	down.		This	specific	scenario	is	intended	to	teach	students	about	

homeostasis.		Although	this	scenario	is	very	specific,	the	model	fragment	used	to	describe	it	is	made	up	

of	two	more	general	purpose	model	fragments	for	movement.		The	escalator	moving	down	is	

represented	with	an	instance	of	a	motion	process,	while	the	person	moving	up	is	represented	with	

another	instance	of	a	motion	process.		When	these	two	processes	are	active	under	the	right	conditions	

(i.e.	the	person	is	walking	up,	the	escalator	is	moving	down,	and	the	person	is	on	the	escalator),	then	the	
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more	specific	model	fragment	is	also	active.		To	interpret	the	one	of	the	analogies	about	electricity,	the	

system	used	a	model	fragment	that	described	liquid	flowing	out	of	a	container.		To	interpret	an	analogy	

about	ecosystems,	the	system	used	a	model	fragment	that	described	a	physical	role	play	scenario,	

where	students	form	a	web	made	of	string.			

	 Background	knowledge,	whether	from	rule	macro	predicates	or	model	fragments,	provide	

implicit	knowledge	about	the	base	domain.		When	interpreting	analogies,	this	implicit	background	

knowledge	is	useful	because	it	allows	base	domain	knowledge	to	be	projected	onto	the	target	domain	

even	if	that	base	domain	knowledge	is	not	explicitly	stated.									

	

4.2.2. Sketch	Interpretation	

Sketch	interpretation	involved	analyzing	the	CogSketch	sketch	file	associated	with	an	analogy	and	

performing	spatial	and	conceptual	reasoning	to	extract	relevant	facts	from	the	sketch.		The	facts	

included	a	combination	of	information	automatically	computed	by	CogSketch	(i.e.	topological	and	

positional	relations)	along	with	inferences	that	were	generated	from	visual	conceptual	reasoning,	

Analogy	 Model	Fragment	Type	 Quantities	
Escalator	/	Homeostasis	 Walking	up	an	escalator	

that	is	moving	down	
(compositional;	more	
general	motion	processes	
are	participants	to	this	
fragment)	

Height/Elevation,	speed	of	
walker,	speed	of	elevator	

Voltage	/	Pressure	 Water	flowing	out	of	a	
container	

Pressure,	depth,	flow	rate	

Ecosystem/Web	 A	student	web	role	playing	
scenario;	movement	
within	the	web	increases	
instability.	

Stability,	speed	of	
movement	

Table	6:	Model	fragments	used	for	interpreting	analogies.	
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qualitative	modeling,	and	multi-state	reasoning.		The	extensions	that	were	used	to	enable	these	three	

types	of	reasoning	are	detailed	next.	

4.2.2.1 Extensions	to	visual	conceptual	relations	

The	first	extension	required	writing	rules	to	bridge	spatial	relations	that	are	computed	by	CogSketch	

with	ontologies	in	Cyc.		Because	CogSketch	uses	a	conceptual	labeling	interface,	a	significant	amount	of	

conceptual	knowledge	comes	directly	from	the	user.		The	spatial	relations	that	are	computed	by	

CogSketch	(automatically	and	on-demand)	are	combined	with	conceptual	information	to	make	new	

inferences,	which	are	referred	to	as	visual-conceptual	relations	because	their	meaning	depends	on	

spatial	and	conceptual	information	(Forbus	et	al.,	2005).		There	are	two	categories	of	visual-conceptual	

relations	that	I	implemented:	part	relations,	and	relations	resulting	from	drawn	arrows.	

	

Part	relations	provide	a	general	way	for	representing	things	and	their	parts.		Parts	can	be	physical	or	conceptual.			
Table	7	shows	the	new	visual	conceptual	relations	that	were	developed	to	support	part-whole	

reasoning.		The	inference	chain	for	part	relations	stems	from	topological	relations,	which	are	

automatically	computed	by	CogSketch,	and	by	glyph	grouping,	which	is	initiated	by	the	user.		Proper	

part	relations	in	the	rcc8	vocabulary	(Cohn	et	al.,	1997)	indicate	when	one	object	contains	another.		If	

Relation	 Spatial	Antecedents	 Conceptual	Antecedents	
visualSubsetOf Hollow	containment	 Sets	or	Collections,	

Containers,	Events	
visualSubsetOf Glyph	grouping	 None	

possessiveRelation Visual	subset	 None	

physicalParts Visual	subset	 Partially	tangible	entities	

subsetOf Visual	subset	 Sets	or	Collections	

subEvents Visual	subset	 Events	

	
Table	7:	New	visual	conceptual	part	relations.	
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the	containing	glyph	represents	a	set,	container,	or	event,	then	the	contained	glyph	is	a	

visualSubsetOf	the	container	glyph.		For	example,	if	a	glyph	of	a	bottle	contains	a	glyph	of	water,	then	

the	water	glyph	is	a	visualSubsetOf	the	bottle	glyph.		Glyph	grouping	can	also	indicate	visual	subsets,	

although	unlike	topological	relations,	glyph	grouping	is	an	explicit	user	action,	so	it	can	be	used	to	infer	

visualSubsetOf	no	matter	what	the	conceptual	labels	are.		For	example,	the	cell	drawn	in	Figure	3	uses	

glyph	grouping	to	indicate	that	when	those	glyphs	are	grouped	together,	they	represent	a	cell.		In	that	

case,	each	of	the	grouped	glyphs	is	a	visualSubsetOf	the	glyph	that	represents	the	cell.		The	visual	

subset	relation	is	a	spatial	antecedent	for	the	rest	of	the	part	relations,	which	can	be	inferred	depending	

on	the	conceptual	labels	of	the	glyphs.		If	the	glyphs	are	instances	of	the	PartiallyTangible	collection	

in	Cyc,	then	the	physicalParts	relationship	holds.		If	the	glyphs	are	sets	or	collections	(i.e.	instances	of	

SetOrCollection	in	Cyc),	then	the	subsetOf	relation	holds.		If	the	glyphs	are	events	(i.e.	instances	of	

Event	in	Cyc),	then	the	subEvents	relation	holds.		Possession	(possessiveRelation)	is	the	most	

general	of	the	part	relations,	holding	for	sets,	collections,	containers,	and	anything	that	is	involved	in	a	

glyph	grouping	action.		For	example,	because	the	cell	nucleus	in	Figure	3	is	a	visualSubsetOf	the	cell,	

the	relation	(possessiveRelation the-cell the-nucleus)	holds.		The	use	of	possessiveRelation,	

rather	than	or	in	addition	to	more	specific	relations	like	physicalParts,	matches	the	way	such	

relationships	are	often	expressed	in	natural	language,	e.g.	“The	cell	has	a	nucleus.”		This	statement,	

although	imprecise,	is	also	at	a	level	of	abstraction	that	transcends	domain,	which	is	useful	for	

interpreting	instructional	analogies.					

	 Arrows	are	used	in	a	variety	of	ways	in	sketches.		Sometimes	they	are	used	to	indicate	motion,	

e.g.	a	person	walking	up	an	escalator.		Sometimes	they	are	used	to	indicate	the	transfer	of	energy	or	a	

change	in	state,	e.g.	a	battery	changing	from	charged	to	dead.		Sometimes	they	are	used	to	indicate	

causality,	e.g.	one	state	causes	or	leads	to	another.		In	CogSketch,	each	arrow	has	a	conceptual	label,	but	
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usually,	additional	information	can	be	inferred	based	on	what	the	arrow	represents	and	how	it	is	

oriented.		CogSketch	already	interprets	arrows	that	are	labeled	as	direction	of	movement	annotations	

and	arrows	that	are	labeled	as	explicit	relations,	but	prior	to	this	thesis	it	did	not	reason	about	arrows	as	

events.		Within	the	Cyc	ontology,	neo-Davidsonian	representations	are	used	to	indicate	thematic	role	

fillers,	and	we	can	thus	make	hypotheses	about	the	roles	filled	in	these	events	based	on	how	the	arrow	

is	drawn	(e.g.	Figure	6).		My	extension	to	these	capabilities	was	to	write	rules	that	capture	the	meaning	

of	the	role	relations	in	Table	8.		

	 The	set	of	visual	conceptual	relations	described	here	are	by	no	means	complete,	but	they	serve	

as	a	vocabulary	for	arrows	in	diagrammatic	representations	that	are	sufficient	for	achieving	the	results	

described	below.			

	

Event	Type	 Inferred	On	Demand	
Creation	event	 (doneBy arrow-object arrow-src) 

(outputsCreated arrow-object arrow-dest) 
(products arrow-obj arrow-dest) 

Destruction	event	 (doneBy arrow-obj arrow-src) 
(inputsDestroyed arrow-obj arrow-dest) 

Making	Something	
Available	

(doneBy arrow-object arrow-src) 
(objectActedOn arrow-object arrow-dest) 
(transferredObject arrow-object arrow-dest) 

Using	an	object	 (doneBy arrow-object arrow-src) 
(instrument-generic arrow-object arrow-dest) 

Intrinsic	state	change	
event	

(objectOfStateChange arrow-obj arrow-src) 
(toState arrow-obj arrow-src) 

	
Table	8:	New	event	role	relations	based	on	arrow	label	and	arrow	direction.		For	each	row,	if	there	exists	an	
object	named	arrow-object	that	belongs	to	the	specified	event	type	and	points	from	arrow-src	and	to	
arrow-dest,	then	the	specified	facts	can	be	inferred	on-demand.	
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4.2.2.2 Qualitative	Modeling	

Using	the	domain	theories	for	2D	mechanics	(Chang	et	al.,	2014)	with	extensions	shown	in	Table	6,	

model	formulation	(Friedman	&	Forbus,	2011)	was	used	to	model	analogies	that	involved	qualitative	

causal	relationships.		Three	new	model	fragment	types	were	defined	for	this	system	(Table	6)	and	they	

are	part	of	the	general	background	knowledge	about	the	base	domain.		To	determine	if	qualitative	

modeling	was	necessary	for	a	particular	analogy,	the	system	checked	for	the	presence	of	quantities	in	

the	analogy.		If	there	were	any	quantities,	the	system	searched	for	model	fragments	that	might	apply	to	

the	sketched	scenario.		The	relevance	of	a	particular	model	fragment	type	was	determined	by	its	

constraints	and	conditions.		For	any	active	model	fragments,	the	system	asserts	consequences	of	the	

model	fragment,	which	typically	indicate	causal	relationships	between	quantities.		For	example,	in	the	

homeostasis/escalator	analogy,	one	of	the	inferences	is	that	there	is	a	positive	qualitative	

proportionality	between	the	height	(i.e.	level)	of	the	person	walking	and	their	speed,	as	well	as	a	

negative	qualitative	proportionality	between	the	height	(i.e.	level)	of	the	person	walking	and	the	speed	

	

Figure	6:	An	illustration	showing	how	new	visual	conceptual	relations	allow	events	to	be	drawn	as	arrows.		The	
top	arrow	represents	using	a	battery.		The	bottom	arrow	represents	charging	a	battery.			

Given:	
(isa top-arrow 

IntrinsicStateChangeEvent) 
(isa bottom-arrow 

IntrinsicStateChangeEvent) 
 
Available	on	demand:	
(objectOfStateChange top-arrow 

charged-battery) 
(toState top-arrow  

drained-battery) 
(objectOfStateChange bottom-arrow 

drained-battery) 
(toState bottom-arrow charged-

battery) 
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of	the	escalator	(Figure	7).		There	is	also	a	qualitative	correspondence	that	indicates	that	when	the	

speeds	of	the	person	and	the	escalator	are	equal,	the	rate	of	change	of	the	person’s	height	is	zero.		

These	relationships	are	part	of	the	target	knowledge	for	this	analogy.		Qualitative	modeling	was	used	to	

interpret	three	out	of	eleven	analogies	in	the	current	dataset.					

	

4.2.2.3 Interpreting	Multi-state	Processes	

Many	of	the	analogies	described	processes.		In	one	of	the	analogies	examined,	the	diagram	depicted	the	

process	using	multiple	states	(Figure	1,	Figure	8).		The	enzyme/key	analogy	depicts	three	states	in	the	

target	domain:	(1)	the	enzyme	and	substrate	are	independent,	(2)	the	enzyme	binds	with	the	substrate,	

(3)	the	enzyme	breaks	the	substrate	apart	and	unbinds.				

	

(qprop ((QPQuantityFn Height) ?person) (RateFn ?person-motion)) (qprop- 
((QPQuantityFn Height) ?person) (RateFn ?esc-motion))) 
(qpCorrespondence 

(RateFn ?person-motion) (RateFn ?esc-motion)                                          
(QPDerivativeFn ((QPQuantityFn Height) ?person)) Zero)) 

	

Figure	7:	The	sketch	associated	with	an	analogy	used	to	explain	homeostasis.		The	person	is	walking	up	an	
escalator	that	is	moving	down.		The	model	fragment	that	describes	this	scenario	has	the	three	consequences	
shown	below	the	sketch.		The	first	statement	means	that	the	faster	the	person	walks,	the	greater	their	height.	
The	second	statement	means	that	the	faster	the	escalator	moves,	the	lesser	the	person’s	height.		The	third	
statement	represents	a	quantity	correspondence:	when	the	person	and	escalator	move	at	the	same	speed,	the	
height	of	the	person	is	not	changing.	



58	
	

	

	 The	first	challenge	of	representing	multi-state	processes	has	to	do	with	contextualizing	

knowledge	correctly.		CogSketch	already	supports	proper	contextualization	through	subsketches.		In	

Figure	8,	each	purple	box	is	an	individual	subsketch	with	its	own	logical	reasoning	environment.		This	

allows	the	sketch	to	represent	the	same	object	under	different	conditions.			

	 The	second	challenge	arises	when	there	are	relationships	between	subsketches	that	need	to	be	

generalized	to	an	entire	concept.		Because	instructional	analogies	at	this	age	level	tend	to	focus	on	

qualitative,	type-level	knowledge,	it	is	important	that	relationships	can	be	generalized	to	an	entire	

concept,	rather	than	just	an	individual	instance.		In	this	case,	the	arrows	represent	enablement	

relationships	to	convey	that	one	state	leads	to	the	other	from	left	to	right.		The	purpose	of	this	analogy,	

however,	is	not	just	to	learn	on	this	single	situation,	but	on	other	situations	like	it,	i.e.	enzyme	activation	

events.		Conceptual	labels	provide	some	additional	information:	the	final	state	is	labeled	as	a	breaking	

	

Figure	8:	The	CogSketch	sketch	for	the	enzyme-key	analogy.		Each	purple	box	is	an	individual	subsketch,	which	is	
used	to	represent	an	individual	state.		The	arrows	between	states	are	enablement	relations	to	indicate	the	order	
of	the	sequence.	
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event	(because	the	substrate	molecule	breaks	apart).		The	first	two	states	are	simply	sub-events	of	an	

enzyme	activation	event.		If	the	enablement	relationships	were	generalized	using	only	this	information,	

we	would	get	underspecified	type-level	relationships,	e.g.	“sub	events	of	enzyme	activations	enable	sub	

events	of	enzyme	activation.”		A	better	approach	would	be	to	analyze	the	sub	events	to	understand	

what	makes	them	different	from	each	other.			

The	system	does	this	via	structure-mapping.		Each	subsketch	is	compared	to	the	others	to	look	

for	properties	that	are	unique	to	each	state.		This	allows	the	model	to	describe	each	state	more	

precisely.		More	specifically,	for	each	state,	the	model	finds	pairwise	candidate	inferences	by	comparing	

it	to	each	of	the	other	states	using	the	structure-mapping	engine.		Each	candidate	inference	is	a	fact	that	

is	true	in	the	base	state,	but	not	the	target	state.		Each	reverse	candidate	inference	is	a	fact	that	is	true	

in	the	target	state,	but	not	the	base	state.		These	facts	can	be	generalized	into	existential	rule	macro	

predicates	(like	the	ones	shown	in	Table	1)	that	qualify	the	collections	of	each	state.		For	example,	when	

comparing	the	first	state	to	the	second,	where	the	first	is	the	base	and	the	second	is	the	target,	there	is	

a	reverse	candidate	inference	that	the	enzyme	intersects	with	the	substrate	molecule.		This	is	another	

way	of	saying	that	an	important	difference	between	the	first	state	and	the	second	state	is	that	the	

enzyme	intersects	with	the	substrate	in	the	second	state.		The	model	translates	this	into	a	property	of	

the	first	state:	the	enzyme	and	the	substrate	do	not	intersect.		This	fact	can	then	be	generalized	into	a	

type-level	rule	macro	predicate,	which	states	that	there	does	not	exist	an	enzyme	that	intersects	with	a	

substrate	molecule.		This	rule	macro	predicate	becomes	a	general	property	of	the	first	state.		Now,	

instead	of	knowing	only	that	the	first	state	is	a	sub-event	of	enzyme	activation,	the	model	now	knows	

that	the	first	state	is	a	sub-event	of	enzyme	activation	where	the	enzyme	is	not	in	contact	with	the	

substrate	molecule.		By	qualifying	the	collections	of	all	three	states,	the	enablement	relations	become	

more	meaningful.		Where	they	used	to	express	that	one	event	enabled	another,	it	can	now	express	that	
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a	state	where	the	molecules	are	not	in	contact	enables	a	state	where	they	are	in	contact	(which	in	turn	

enables	the	final	state	where	the	substrate	has	broken	apart).	 	

4.2.3. Text	Interpretation	

Text	interpretation	was	completed	using	the	existing	EANLU	pipeline,	with	one	new	approach	for	

disambiguation.		EANLU	has	several	optional	disambiguation	heuristics	that	guide	the	selection	of	

interpretations	choices.		The	two	heuristics	that	are	used	to	make	disambiguation	choices	for	

instructional	analogies	are	favored	context	and	information	gain	heuristics.		The	favored	context	

heuristic	takes	as	input	a	microtheory	name,	which	can	be	used	as	a	frame	of	reference	for	interpreting	

the	current	reading.		For	instructional	analogies,	the	only	input	to	the	favored	context	heuristic	is	the	

name	of	the	microtheory	that	contains	the	information	stored	in	the	sketch.		Since	glyphs	in	CogSketch	

have	conceptual	labels	that	are	taken	directly	from	the	Cyc	knowledge	base,	they	provide	direct	

evidence	for	particular	interpretation	choices.		Given	an	interpretation	choice,	the	favored	context	

heuristic	counts	the	number	of	collections	and	predicates	in	the	choice	that	are	present	in	the	sketch.		

The	number	of	common	collections	and	predicates	is	the	preference	weight	assigned	to	that	choice.		

This	means	that	choices	that	involve	more	things	that	are	also	mentioned	in	the	sketch	are	given	

preference.		All	of	these	heuristics	predate	this	thesis,	except	for	the	use	of	predicates	(in	addition	to	

collections)	in	the	favored	context	heuristic.		Lastly,	I	used	Barbella’s	(Barbella	&	Forbus,	2011)	

analogical	dialogue	act	interpretation	to	detect	when	the	analogy	is	being	introduced,	when	

correspondences	are	being	introduced,	and	to	detect	which	key	elements	are	parts	of	the	base	and	

target	domain	respectively.		
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4.2.4. Multimodal	Integration	

Once	the	initial	sketch	and	text	interpretation	is	complete,	the	two	representations	need	to	be	merged	

to	take	advantage	of	information	from	both	sources.		This	problem	can	be	characterized	as	an	alignment	

problem	(Lockwood	&	Forbus,	2009).		I	extended	the	approach	used	in	Lockwood’s	work	by	using	

language	that	has	been	automatically	disambiguated	and	by	using	event	interpretations	to	provide	

support	for	accurate	alignments.	

Structure-mapping	is	used	to	align	the	knowledge	gathered	from	the	analogy’s	text	and	sketch	

sources.		Aligning	these	two	representations	can	be	characterized	as	a	very	near,	within-domain	

analogy.		The	two	descriptions	are	literally	describing	the	same	things.		Using	partition	constraints	for	all	

collections	is	a	way	to	ensure	that	terms	can	only	map	to	each	other	if	they	belong	to	the	same	

collection(s),	for	example,	keys	match	with	keys,	locks	with	locks	and	so	on.		This	works	very	well	when	

the	conceptual	labels	in	the	sketch	are	identical	to	the	interpretations	generated	by	EANLU.		However,	

even	when	there	is	considerable	overlap	in	conceptual	information,	each	modality	typically	includes	

unique	information.		For	example,	the	enzyme/key	analogy	shown	in	Figure	1	(with	CogSketch	sketch	

shown	in	Figure	8)	has	substantial	overlap	in	conceptual	information	because	each	glyph	in	the	sketch	

has	a	label	(EnzymeMolecule,	SubstrateMolecule,	EnzymaticBindingSite,	etc.).		These	labels	

guarantee	that	the	enzyme	molecule	mentioned	in	the	text	modality	will	align	with	the	enzyme	shown	

in	the	sketch	because	partition	constraints	are	used.		However,	there	are	several	things	that	are	

mentioned	in	the	text	that	are	not	present	in	the	sketch,	e.g.	the	binding	site’s	unique	chemical	makeup,	

the	key’s	unique	shape,	the	fact	that	enzymes	can	be	reused,	etc.		Similarly,	there	is	information	in	the	

sketch	that	is	not	present	in	the	text,	e.g.	the	spatial	intersection	of	the	enzyme	and	substrate,	the	

sequential	nature	of	enzyme	activation,	etc.		The	differences	between	the	two	modalities	mean	that	

there	are	opportunities	for	mismatches.		This	is	especially	true	for	analogies	that	involve	concepts	that	
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are	not	explicitly	drawn,	e.g.	energy.		The	system	reduces	the	chances	for	mismatches	by	reasoning	

about	events	in	the	text	interpretation	and	projecting	that	information	to	the	sketch	modality.	

Generic	event	interpretation	takes	the	neo-Davidsonian	event	interpretations	generated	by	

EANLU	and	projects	them	to	the	sketch	modality	(Figure	9).		It	is	based	on	the	assumption	that	when	

instructional	analogies	describe	events,	they	describe	possible	generic	roles	for	the	primary	participants	

of	the	events.		For	example,	in	the	cell/city	analogy,	the	sentence	“Power	stations	provide	electricity”	is	

interpreted	as	a	statement	about	the	functions	of	power	stations.		Using	the	neo-Davidsonian	

representation,	such	event	would	be	represented	like	this:	

(isa provide34501 MakingSomethingAvailable) 

(performedBy provide34501 power-station88374) 

(objectActedOn provide34501 electricity18186) 

	

To	project	this	information	into	the	sketch	modality,	the	system	looks	at	the	primary	actor	of	the	event:	

power-station88374.		This	entity	is	an	instance	of	the	collection	PowerGenerationComplex.		The	

system	searches	for	instances	of	this	collection	in	the	sketch,	and	if	it	finds	one,	searches	for	instances	of	

MakingSomethingAvailable	and	of	Electricity.		In	the	case	of	the	cell/city	analogy,	there	is	an	instance	

of	Windmill,	which	is	a	subcollection	of	PowerGenerationComplex,	but	there	are	no	instances	of	

MakingSomethingAvailable	or	Electricity.		The	system	then	generates	two	speculative	entities:	an	

event	that	is	an	instance	of	MakingSomethingAvailable	and	an	entity	that	is	instance	of	Electricity.		

The	system	asserts	role	relations	between	the	entities,	resulting	in	the	following	representation	in	the	

sketch	modality:	

(isa (SpeculativeThingFn event52582) MakingSomethingAvailable) 



63	
	
(performedBy (SpeculativeThingFn event52582) windmills) 

(objectActedOn (SpeculativeThingFn event52582) (SpeculativeThingFn electricity52843)) 

	

	

The	system	also	generates	statements	that	describe	the	events	with	more	specific	collections,	similar	to	

the	way	multi-state	processes	(described	above)	are	interpreted.		Because	the	goal	of	these	analogies	is	

often	to	build	type-level	knowledge,	denoting	collections	with	specific	terms	can	be	useful.		For	

example,	the	cell/city	analogy	conveys	functions	and	behaviors	of	the	parts	of	the	cell.		The	initial	

language	interpretations	use	verbs	to	detect	what	kinds	of	events	are	being	described.		Using	power	

stations	as	an	example,	the	verb	“providing”	indicates	that	the	event	being	described	is	an	instance	of	

MakingSomethingAvailable.		The	role	relations	provide	further	information,	and	the	generic	event	

	

Figure	9:	An	illustration	of	how	generic	event	interpretation	works.		Event	information	from	the	text	modality	is	
assumed	to	apply	to	elements	in	the	visual	modality.		Providing	electricity	is	projected	onto	windmills	because	
they	are	specializations	of	power	stations..			
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interpretation	procedure	uses	collection	denoting	functions	(described	in	section	2.2)	to	indicate	that	

the	electricity-providing	event	is	an	instance	of	a	more	specific	collection:	

(isa provide34501 (MakingAbstractAvailableFn Electricity)) 

Similarly,	this	information	is	projected	into	the	visual	domain	as	well:	

(isa (SpeculativeThingFn event52582) (MakingAbstractAvailableFn Electricity)) 

These	collection	membership	statements	provide	greater	structural	support	for	putting	windmills	and	

power	stations	into	correspondence.		This	is	particularly	useful	in	this	case	because	the	conceptual	

attributes	for	these	entities	do	not	match	exactly,	so	it	is	not	guaranteed	that	they	will	correspond	based	

on	partition	constraints	alone.		Lastly,	the	use	of	collection	denoting	functions	is	also	useful	for	

representing	type-level	information.		Rather	than	making	general	assertions	about	events	where	

something	is	made	available,	the	system	can	now	make	general	assertions	about	events	where	

electricity	is	made	available.	

The	analogical	mapping	between	the	text	information	and	sketch	information	determines	how	

the	information	is	merged.		Corresponding	entities	and	facts	are	merged	together	and	all	facts	that	were	

not	in	the	mapping	are	included	in	the	final	representation	as	is.		The	advantage	to	using	alignment	and	

merging	(rather	than	a	simple	union	of	facts)	is	that	it	allows	aligned	entities	to	refer	to	the	same	

conceptual	thing.		For	example,	when	combining	facts	about	the	cell/city	analogy,	we	do	not	want	a	

multimodal	representation	where	there	are	two	nuclei.		The	nucleus	that	is	mentioned	in	the	text	is	

assumed	to	be	the	same	nucleus	that	is	drawn	in	the	sketch	because	the	two	nuclei	correspond	to	each	

other	in	the	analogical	mapping.		Consequently,	the	final	representation	contains	knowledge	about	the	

nucleus	controlling	the	cell	(a	fact	which	comes	from	the	text)	and	about	the	nucleus	being	a	proper	part	

of	the	cell	(a	fact	which	comes	from	the	sketch).		Including	facts	that	were	not	in	the	mapping	is	also	
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important,	because	it	allows	the	system	to	include	facts	that	are	present	in	one	modality	but	not	the	

other.			

4.2.5. Case	Extraction	

Case	extraction	is	the	process	by	which	the	base	and	target	descriptions	are	built	from	the	integrated	

multimodal	description.		Case	extraction	uses	three	sources	of	information	to	split	facts	in	the	

multimodal	description	into	a	base	and	target:	analogical	dialogue	acts,	event	role	relations,	and	part-

whole	relationships.		These	information	sources	are	used	to	build	sets	of	entities	that	are	hypothesized	

to	be	core	elements	of	the	base	and	target	domain	respectively.		These	sets	are	then	used	in	an	iterative	

search	over	the	multimodal	description.		Analogical	dialogue	acts	determine	the	initial	members	of	each	

entity	set.		If	an	analogical	dialogue	act	introduces	a	correspondence	between	items	B	and	T,	then	B	is	

an	element	of	the	base	domain	and	T	is	an	element	of	the	target	domain.		For	each	element	identified	in	

analogical	dialogue	acts,	the	system	also	includes	any	sub	parts	or	sub	objects	of	that	element.		Sub	

objects	are	determined	by	possessive	relations	(described	in	section	4.2.2.1),	which	come	from	natural	

language	interpretation	(e.g.	“ATP	has	energy”)	and	from	visual	conceptual	relations.		For	each	of	these	

entities	(and	their	sub	objects),	the	system	searches	for	events	that	are	related	to	them.		Each	event	

along	with	any	other	participants	of	that	event,	are	included	in	the	entity	set	as	well.		Using	these	entity	

sets,	the	model	proceeds	with	a	very	simple	voting	heuristic	that	classifies	any	remaining	facts	as	

belonging	to	the	base	description,	the	target	description	or	as	being	ambiguous,	based	on	number	of	

known	base	or	target	items	mentioned	in	the	expression:			
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If	a	fact	involves	more	base	entities	than	target	entities,	it	is	classified	as	being	a	fact	about	the	base	

domain.		Ambiguous	statements,	which	involve	an	equal	number	of	base	and	target	entities,	are	

discarded.	

4.2.6. Type-level	Summarization	

As	noted	in	Chapter	3,	the	analogies	in	the	FAR	guide	are	aimed	at	teaching	type-level	conceptual	

knowledge.		Although	detecting	generics	and	representing	them	accurately	is	a	known	problem	in	

natural	language	understanding,	this	model	takes	an	aggressive	approach	to	generalization,	and	

assumes	that	certain	predicates	generalize	as	follows.		Part	predicates	(e.g.	physical	part	predicates,	

subset	of)	generalize	with	a	universal	quantifier	over	the	whole	and	an	existential	quantifier	over	the	

part.		For	example,	a	sketch	that	illustrates	a	cell	nucleus	as	part	of	a	cell	will	generalize	to	a	rule	macro	

predicate	that	states	that	for	all	cells,	there	exists	a	nucleus	that	is	a	part	of	it.		Primary	actor	role	

relations	generalize	with	a	universal	quantifier	over	the	primary	actor	and	an	existential	quantifier	over	

the	event.		This	is	especially	useful	for	analogies	that	focus	on	behaviors	and	functions.		When	an	

analogy	states,	for	example,	that	mitochondria	provide	energy,	this	generalizes	to	a	fact	that	states	that	

all	mitochondria	provide	energy.		Temporally	coexisting	predicates	(i.e.	binary	relations	between	non-

	

classify-fact(fact, base-items, target-items) 

 base-count ß length(intersection(base-items, args(fact))) 

 target-count ß length(intersection(target-items, args(fact))) 

 IF base-count > target-count THEN RETURN :BASE 

 ELSE IF target-count > base-count THEN RETURN :TARGET 

 ELSE RETURN :AMBIGUOUS 
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events	that	temporally	coexist)	are	generalized	with	a	universal	quantifier	over	the	first	argument	and	

an	existential	over	the	second.		For	example,	a	sketch	that	illustrates	that	a	cell	is	bigger	than	a	nucleus,	

will	generalize	to	a	rule	macro	predicate	that	states	that	for	all	cells,	there	exists	a	nucleus	that	it	is	

bigger	than.		Facts	about	instances	are	discarded	unless	they	represent	quantities	or	constants	in	the	KB,	

e.g.	Zero	or	PlanetEarth.		By	summarizing	the	information	in	the	base	and	target	with	type-level	

predicates,	the	base	and	target	descriptions	become	suitable	for	a	type-level	analogy,	where	

correspondences	and	inferences	about	collections	(rather	than	strictly	entities)	can	be	made.				

4.2.7. Mapping	and	Inference	Evaluation	

The	instructional	analogy	is	created	using	SME	with	constraints	that	have	been	identified	by	analogical	

dialogue	acts	and	event	interpretations.		As	with	case	extraction,	analogical	dialogue	acts	provide	the	

starting	point	for	determining	what	constraints	should	be	put	on	the	mapping	process.		

Correspondences	that	have	been	introduced	in	the	text	are	used	as	hard	constraints	on	the	match.		

Events	that	those	entities	participate	in	and	the	other	participants	of	those	events	are	used	as	required	

correspondences	as	well.		However,	since	the	analogy	is	operating	at	the	type-level,	those	match	

constraints	are	translated	so	that	they	are	between	concepts	(i.e.	collections)	rather	than	instances	(i.e.	

entities).		For	a	given	constraint	between	two	entities,	A	and	B,	the	collections	that	those	entities	belong	

to	are	used	as	constraints.		Using	the	cell/city	analogy	as	an	example,	the	sentence	“A	cell	is	like	a	city”	

represents	a	dialogue	act	that	introduces	a	correspondence	between	an	instance	of	City	and	an	

instance	of	Cell.		This	correspondence	is	translated	to	a	required	correspondence	between	the	

collections	City	and	Cell.		This	translation	is	necessary	for	capturing	the	type-level	semantics	of	the	

analogy	and	for	enabling	inferences	about	categories	or	classes	of	things,	rather	than	single	examples	of	

them.	
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	 Once	an	initial	match	is	constructed,	its	inferences	are	evaluated	and	the	model	attempts	to	

resolve	skolems.		Because	all	the	statements	in	the	match	are	type-level	statements,	skolems	can	be	

either:	collections,	predicates,	or	entities	that	passed	type-level	filtering.		Such	entities	may	be	known	

terms	in	the	Cyc	knowledge	base,	e.g.	PlanetEarth,	or	qualitative	quantities,	e.g.	Many-Quant.		Abstract	

entities,	like	quantities,	and	predicates	are	accepted	as	is.		Collections	require	additional	inspection	to	

determine	if	they	are	known	to	be	very	abstract	or	if	they	involve	functional	predicates	that	were	

treated	as	entities	and	whose	arguments	have	known	matches.		Constants	and	abstract	collections	were	

manually	identified	based	on	initial	language	and	sketch	interpretations.		The	following	collections	are	

considered	abstract	and	therefore	acceptable	as	is	for	skolem	resolution:	Event,	FunctionalSystem,	

Individual,	PartiallyTangible,	Set-Mathematical,	SetOrCollection,	SpatialThing,	Thing.		

Constants	were	defined	as	numbers	or	instances	of	the	Cyc	collection:	ScalarOrVectorInterval.		

Instances	of	this	collection	include	things	like:	Now,	Many-Quant,	Few-Quant,	Billions,	etc.		These	lists	

are	not	exhaustive,	but	simply	a	starting	point	based	on	inputs	to	the	model.		They	point	to	one	of	the	

difficulties	in	interpreting	cross-domain	analogies	that	was	mentioned	in	Chapter	3:	representing	terms	

at	the	right	level	of	abstraction	and	knowing	when	a	term	transcends	domain.			

	 If	there	are	candidate	inferences	that	have	been	fully	resolved,	they	are	accepted	as	fact	and	

stored	in	the	target	domain.		The	match	can	then	be	extended	in	an	attempt	to	arrive	at	more	

inferences.		Accepting	inferences	and	extending	the	match	makes	it	possible	to	build	larger	mappings	

with	higher	order	candidate	inferences.		Match	extending	continues	until	there	are	no	more	candidate	

inferences	that	can	be	resolved,	or	until	a	maximum	depth	is	reached	(determined	by	the	maximum	

depth	of	expressions	in	the	base	domain).		When	match	extension	and	inference	evaluation	finishes,	the	

final	target	description	is	stored	into	the	KB	so	that	it	can	be	used	for	future	reasoning.	
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4.3 Evaluation	

To	evaluate	this	model,	I	adapted	11	analogies	from	the	FAR	guide:	

1) Rechargeable	battery	analogy	for	ATP	
2) City	analogy	for	a	cell	
3) Earth	analogy	for	cell	components	
4) Supermarket	analogy	of	a	biological	classification	system	
5) Lock	and	key	analogy	for	enzyme	action	
6) Fluid	mosaic	analogy	for	cell	membranes	
7) Homeostasis	is	like	walking	up	a	down	escalator	
8) Web	analogy	for	the	interdependence	of	organisms	
9) Clothespin	analogy	for	the	structure	of	DNA	
10) Water	circuit	analogy	for	electric	current	
11) Water	pressure	analogy	for	voltage	

In	the	FAR	guide,	each	analogy	consists	of	an	explanation	and	a	table	of	correspondences.	For	each	

analogy,	I	manually	translated	the	language	into	simplified	English	to	support	interpretation	with	EANLU	

and	sketched	a	spatial	representation	of	the	analogy	into	CogSketch.		For	each	analogy,	the	model	takes	

a	sketch	file	and	a	text	file	as	input	and	produces	microtheory	which	contains	newly	acquired	facts	

about	the	target	domain.			

4.3.1. Model	Input	

For	building	the	text	passages,	each	analogy	needed	to	be	translated	from	the	table	and	text	

format	in	the	book	to	complete	sentences	with	simple	syntax.		Sentences	that	introduced	

correspondences	were	used	to	account	for	terms	that	were	listed	on	the	same	row.		For	example,	the	

enzyme/key	analogy	shown	in	Figure	1	has	the	following	simplified	English	representation:	

An	enzyme	is	like	a	key.		A	substrate	molecule	is	like	a	lock.		The	key	has	ridges.		The	
ridges	have	a	unique	shape.		The	enzyme	binding	site	is	like	the	ridges.		The	enzyme	
binding	site	has	a	unique	chemical	makeup.		The	key	only	unlocks	specific	locks.		The	
enzyme	reacts	only	with	specific	substrate	molecules.		The	key	unlocks	the	lock.		The	
enzyme	breaks	apart	the	substrate	molecules.		After	unlocking	a	lock,	the	key	is	
unchanged.		The	key	can	be	used	over	and	over	again.	Enzyme	action	is	like	unlocking	a	
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lock.		The	enzyme	is	unchanged	by	the	chemical	reaction.		The	enzyme	can	be	used	over	
and	over	again.	

This	passage	is	longer	than	the	table	representation	in	Figure	1	because	the	table	representation	in	the	

FAR	guide	is	often	more	concise	than	a	passage	that	explains	the	analogy.		For	example,	some	rows	only	

have	the	names	of	entities	that	are	supposed	to	correspond	to	each	other.		For	input	to	EANLU,	these	

were	translated	into	complete	sentences,	e.g.	“An	enzyme	is	like	a	key.”		Additionally,	some	longer	

sentences	were	split	into	multiple	shorter	ones	(but	more	words	overall)	to	enable	interpretation	in	

EANLU.			

	 All	but	one	of	the	11	analogies	evaluated	here	were	presented	with	a	spatial	representation	of	

some	kind.		Seven	analogies	were	presented	in	the	FAR	guide	with	spatial	representations	(either	

diagrams,	sketches,	or	photos)	of	the	base	and	target	domain	(either	separately	or	together	in	a	blended	

representation,	as	shown	in	Figure	7).		For	those	analogies,	I	sketched	those	representations	into	

CogSketch	and	used	conceptual	labeling	and	glyph	grouping	to	convey	accurate	conceptual	information.		

As	noted	earlier,	CogSketch	does	not	perform	sketch	recognition.		The	kinds	of	things	depicted	in	each	

sketch	are	given	explicitly	through	labels	from	the	Cyc	knowledge	base.		This	allows	CogSketch	to	reason	

about	the	entities	drawn	in	the	sketch	with	respect	to	the	Cyc	ontology.		It	also	allows	CogSketch	to	

reason	about	part-whole	relationships	via	glyph	grouping.		For	example,	in	the	enzyme/key	sketch	

(Figure	8),	the	enzyme	and	enzyme	activation	site	are	two	separate	glyphs,	with	labels,	and	they	are	

grouped	to	convey	that	the	activation	site	is	part	of	the	enzyme.		The	conceptual	labeling	and	manual	

glyph	segmentation	(and	optional	grouping)	therefore	provide	a	great	deal	of	conceptual	information	on	

their	own.		The	remaining	three	analogies	with	spatial	representations	only	had	pictures	for	the	base	

domain.		For	the	analogies	with	only	base	spatial	information,	I	supplemented	the	sketch	with	a	target	

representation	of	my	own	so	that	there	was	enough	conceptual	information	about	the	target	domain	to	
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assist	with	the	overall	interpretation	(the	ablation	experiments	in	this	chapter	will	illustrate	why	this	was	

necessary	given	the	current	state	of	this	model).		Lastly,	one	of	the	analogies,	the	cell/city	analogy,	had	

no	spatial	representations	at	all.		For	this	analogy,	I	supplemented	the	text	passage	with	a	CogSketch	

sketch	of	a	city	and	a	cell.		The	full	set	of	text	passages	and	sketch	descriptions	can	be	found	in	

APPENDIX	A:	Instructional	Analogies.				

As	an	evaluation	measure,	I	tested	the	model’s	accuracy	on	a	set	of	gold	standard	queries	that	I	

wrote	based	on	the	presentation	of	the	analogies	in	the	FAR	guide.		Essentially,	these	queries	address	

the	following	question:	if	the	model	successfully	interpreted	the	analogy,	what	should	it	know	about	the	

target	domain?		The	expected	knowledge	was	manually	translated	into	Cyc	queries.		Table	9	shows	the	

gold	standard	queries	for	the	enzyme/key	analogy	in	natural	language	and	in	the	Cyc	representational	

language.		
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4.3.2. Model	Performance	

The	full	model	successfully	processed	all	11	analogies.			

Enzyme	active	sites	have	a	unique	chemical	makeup.	
(partTypes EnzymeMolecule  
                  (CollectionIntersectionFn  
                   (TheSet EnzymeBindingSite 
                           (ThingDescribableAsFn Unique-TheWord Adjective)))) 
 

Enzymes	only	react	with	specific	substrates.	
(relationAllExistsAndOnly chemicalReactants  
   (SubcollectionOfWithRelationToTypeFn  

(SubcollectionOfWithRelationToTypeFn ChemicalReaction chemicalReactants 
SubstrateMolecule) catalyst EnzymeMolecule)  

         (CollectionIntersectionFn  
           (TheSet SubstrateMolecule 
              (ThingDescribableAsFn Specific-TheWord Adjective)))) 
	
Enzyme	action	breaks	apart	substrate	molecules 
(relationAllExists subEvents EnzymeActivationEvent  
      (SubcollectionOfWithRelationToTypeFn  

(SubcollectionOfWithRelationToTypeFn BreakingEvent doneBy EnzymeMolecule) 
objectOfStateChange SubstrateMolecule)) 
 

The	enzyme	comes	out	of	the	reaction	unchanged.	
 (relationExistsAll unchangedActors EnzymeActivationEvent EnzymeMolecule) 
 
When	enzymes	bind	to	substrate	molecules,	it	enables	the	substrate	to	break	apart.	
(enables-SitTypeSitType  
        (SubcollectionOfWithRelationToFn  
         (CollectionIntersectionFn  
          (TheSet  
           (SubcollectionOfWithRelationToTypeFn Situation subEvents  
                                                ChemicalReaction)  
           (SubcollectionOfWithRelationToTypeFn Situation subEvents  
                                                EnzymeActivationEvent) Situation))                

holdsIn  
         (relationExistsExists objectsIntersect EnzymeMolecule  
                               SubstrateMolecule))  
        (SubcollectionOfWithRelationToTypeFn  
         (SubcollectionOfWithRelationToTypeFn BreakingEvent doneBy  
                                              EnzymeMolecule) objectOfStateChange 

SubstrateMolecule)) 
	
Enzymes	can	be	reused.	
(relationAll repeatedEvent EnzymeActivationEvent) 
	
Table	9:	Gold	standard	queries	in	natural	language	and	in	the	Cyc	representational	language	for	the	enzyme/key	
analogy.	
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Table	10	shows	the	sizes	of	the	analogies	in	terms	of	sentences	in	text	input	and	number	of	facts	at	

various	stages	of	processing.		The	text	passages	varied	in	size	but	ranged	between	4	and	18	sentences.		

Notably,	the	multimodal	interpretation	is	not	simply	a	union	of	the	facts	in	each	modality.		Because	SME	

is	used	to	align	the	representations,	entities	are	merged	and	redundant	facts	are	avoided.		Similarly,	the	

multimodal	interpretation	is	also	not	a	union	of	the	base	and	target	cases,	since	there	are	often	facts	

that	cannot	be	classified	as	belonging	to	either	the	base	or	target	domain	(Table	11).		After	facts	are	

classified	as	belonging	to	the	base	or	target	domain,	they	are	generalized	to	type-level	statements.		The	

sizes	of	the	base	and	target	cases	after	type-level	summarization	are	shown	in	Table	12.		

	

Analogy	Name	 Sentences	in	
text	input	

Facts	in	text	
interp.	

Facts	in	
sketch	
interp.	

Facts	in	
multimodal	

interp.	
ATP	 15	 181	 121	 258	
Cell	(City)	 15	 160	 231	 321	
Cell	(Earth)	 5	 38	 165	 163	
Classification	 17	 188	 415	 580	
Enzyme	 15	 121	 187	 292	
Membrane	 9	 98	 74	 144	
Homeostasis	 10	 97	 75	 150	
Ecosystem	 4	 42	 250	 254	
DNA	 12	 85	 374	 354	
Circuits	 18	 162	 130	 250	
Voltage	 7	 51	 63	 90	

	
Table	10:	Summary	of	text	and	case	sizes	for	9	biology	analogies	and	2	electricity	analogies.	
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The	full	model	achieved	an	average	accuracy	of	83%	across	all	11	analogies.		Ablation	

experiments	compared	the	full	model	to	three	other	conditions:		

• Full	model	without	the	use	of	background	knowledge	

• Full	model	without	the	base	domain	

• Full	model	without	the	sketched	input	

Analogy	Name	 Base	Facts	 Target	Facts	 Ambiguous	Facts	
ATP	 87	 124	 47	
Cell	(City)	 153	 128	 40	
Cell	(Earth)	 58	 36	 69	
Classification	 261	 202	 117	
Enzyme	 127	 125	 40	
Membrane	 54	 83	 7	
Homeostasis	 66	 60	 24	
Ecosystem	 60	 164	 30	
DNA	 138	 163	 53	
Circuits	 112	 78	 60	
Voltage	 54	 26	 10	

	
Table	11:	Number	of	facts	classified	as	belonging	to	the	base	domain,	belonging	to	the	target	domain,	and	being	

ambiguous.	

Analogy	Name	 Type-level	Base	Facts	 Type-level	Target	Facts	
ATP	 54	 77	
Cell	(City)	 86	 88	
Cell	(Earth)	 31	 8	
Classification	 108	 47	
Enzyme	 45	 115	
Membrane	 13	 35	
Homeostasis	 38	 38	
Ecosystem	 15	 228	
DNA	 23	 83	
Circuits	 47	 27	
Voltage	 23	 9	

Table	12:	Number	of	facts	in	base	and	target	domains	after	type-level	summarization	and	analogical	mapping.	
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Removing	the	ability	to	import	qualitative	background	knowledge	in	the	form	of	rule	macro	

predicates	and	qualitative	model	fragments	caused	overall	accuracy	to	drop	to	59%	(Figure	10).		This	

means	that	background	knowledge	plays	an	important	role	in	this	model’s	ability	to	build	new	

knowledge	about	the	target	domain.		However,	at	59%,	this	result	also	means	that	much	of	the	

knowledge	that	was	tested	in	the	gold	standard	queries	was	either	explicitly	stated	in	the	analogy’s	text	

or	sketch,	was	transferred	from	explicitly	stated	base	knowledge,	or	was	inferred	during	the	visual	

conceptual	elaboration.		This	is	true	for	analogies	that	deal	with	part-whole	relations,	like	the	cell/earth	

analogy,	where	the	part-whole	relations	are	given	explicitly	in	the	sketch	via	relation	arrows,	or	the	

cell/city	analogy	where	part-whole	relations	are	inferred	from	glyph	grouping.		However,	as	noted	in	

Chapter	3,	analogies	that	are	less	verbose	might	require	learners	to	fill	the	gaps	with	background	

knowledge.		The	cell/earth	is	one	such	analogy,	and	its	accuracy	drops	from	100%	with	the	full	model	to	

72%	when	no	background	knowledge	is	used.		This	suggests	that	when	it	comes	to	the	importance	of	

background	knowledge,	there	is	variation	within	this	set	of	analogies	and	that	the	presentation	of	the	

analogy	(complete	sentences	vs.	correspondences	only)	may	be	a	clue	that	background	knowledge	is	

important.		As	expected,	the	performance	was	worse	in	the	no	background	condition	for	the	three	

analogies	that	relied	on	qualitative	modeling	for	interpretation	(homeostasis,	ecosystem,	and	voltage).						
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The	second	ablation	condition	disabled	the	analogy	entirely,	making	it	both	impossible	to	use	

background	information	from	the	base	domain	and	explicit	information	about	the	base	domain.		This	

	

Figure	10:	Results	from	ablation	experiments	by	analogy.		The	bold	line	represents	average	accuracy	across	all	
analogies.	

Analogy	Name	 #	Gold	
Standard	
Queries	

Full	Model		
(#	correct)	

No	
Background	
(#	correct)	

No	Base		
(#	correct)	

No	Sketch		
(#	correct)	

ATP	 11	 9	 8	 4	 3	
Cell	(City)	 12	 10	 7	 5	 4	
Cell	(Earth)	 11	 11	 8	 4	 0	
Classification	 11	 4	 1	 5	 0	
Enzyme	 6	 5	 4	 4	 0	
Membrane	 6	 6	 6	 4	 2	
Homeostasis	 6	 5	 2	 2	 2	
Ecosystem	 10	 10	 9	 6	 0	
DNA	 12	 10	 10	 10	 0	
Circuits	 6	 4	 4	 3	 0	
Voltage	 1	 1	 0	 0	 0	
Table	13:	Performance	of	individual	analogies	on	each	of	the	four	experimental	conditions.	
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effect	caused	a	greater	drop	in	accuracy,	to	47%.		This	indicates,	as	expected,	that	background	and	

explicit	knowledge	about	the	base	domain	is	important	for	interpreting	the	analogy.		Nevertheless,	a	

considerable	amount	of	target	knowledge	(almost	half)	is	still	explicitly	stated	in	the	analogy.		

Interestingly,	the	performance	on	one	of	the	analogies	(supermarket	analogy	for	classification)	

improved	in	the	no	base	domain	condition.		This	analogy	was	unlike	the	others	in	that	it	did	not	have	a	

base	and	target	domain	where	individual	entities	could	be	aligned	to	each	other.		The	analogy	compares	

the	organizational	structure	of	a	supermarket	with	the	organizational	structure	of	biological	taxonomies.		

In	the	other	analogies,	entities	were	typically	introduced	individually	in	the	base	and	target	domain	(e.g.	

the	enzyme	is	like	a	key;	DNA	is	like	a	clothespin	structure)	and	therefore	represented	individually	in	the	

text	and	sketch	representations.		In	the	classification	analogy,	however,	groups	(i.e.	species	and	genus)	

and	sections	(e.g.	dairy	section,	produce	section)	are	represented	with	multiple	diagram	elements,	

making	a	clean	1:1	mapping	difficult.		Notably,	the	full	model	performed	the	worst	on	this	analogy	when	

compared	to	all	of	the	others	(4/11	queries	correct;	36%).		This	is	one	case	where	perhaps	

rerepresentation	is	needed	to	accurately	interpret	the	analogy.	

The	final	condition	removed	the	sketch	entirely	from	the	process.		Background	knowledge	and	

explicit	base	knowledge	were	still	used	in	this	condition;	it	just	relied	entirely	on	the	natural	language	

input.		The	model	performed	at	its	worst	in	this	condition	with	an	accuracy	of	12%.		This	indicates	that	in	

this	model,	the	conceptual	labels	provided	in	the	sketch	play	a	critical	role	in	interpretation.		The	

conceptual	labels	from	the	sketch	come	directly	from	the	Cyc	ontology,	meaning	that	there	is	a	direct	

connection	between	the	labels	and	the	semantic	interpretation	choices	provided	by	EANLU.		Thus,	the	

conceptual	labels	from	the	sketch	are	mostly	responsible	for	making	the	right	disambiguation	choices.					
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4.4 Discussion	

The	experiments	in	this	chapter	support	claim	1	of	this	thesis.		They	demonstrate	that	a	combination	of	

sketched	input,	simplified	natural	language	understanding,	and	structure-mapping	can	be	used	to	

capture	qualitative	science	knowledge.		Structure-mapping	is	used	in	two	main	ways.		First,	it	is	used	to	

merge	sketch	and	text	representations.		It	is	also	used	to	build	the	cross-domain	analogy,	which	is	

effective	at	transferring	knowledge	from	the	base	to	the	target	domain	based	on	the	ablation	conditions	

where	the	background	knowledge	and	the	base	domain	were	excluded.		As	mentioned	earlier	in	this	

chapter,	structure-mapping	is	also	used	to	detect	important	differences	between	states	in	a	sketch,	but	

this	was	only	relevant	for	one	out	of	the	11	analogies.	

	 The	ablation	experiments	also	support	the	claim	that	background	knowledge	and	visual	

representations	play	an	important	role	interpreting	instructional	analogies.		The	qualitative	analysis	in	

Chapter	3	also	supports	this	claim.			

	 One	important	limitation	of	this	model	is	how	base	domain	and	background	knowledge	is	used.		

The	ablation	experiments	indicated	that	out	of	the	three	sources	of	information	(background	

knowledge,	explicit	base	knowledge,	sketch	knowledge),	sketch	knowledge	had	the	greatest	impact	on	

interpretation	accuracy.		This	result	cannot	be	used	to	suggest	claims	about	the	way	people	interpret	

analogies.		The	reason	for	this	has	to	do	with	broader	challenges	in	knowledge	representation.		For	a	

symbolic	reasoning	system,	such	as	the	one	built	for	this	thesis,	there	is	no	difference	between	asserting	

a	fact	and	having	the	system	understand	it	(as	far	as	understand	means	in	this	system).		In	this	model,	

there	is	no	difference	between	storing	a	fact	and	learning	it	because	of	the	limits	of	the	evaluation.		To	

test	the	system’s	knowledge,	it	is	simply	queried,	which	is	the	equivalent	of	having	someone	recite	a	fact	

back	to	you.		Better	evaluations	of	knowledge,	such	as	how	it	is	used	in	other	types	of	reasoning	like	
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question	answering,	would	likely	provide	a	more	accurate	measure	of	how	well	a	system	understands	a	

concept	and	therefore	how	important	background	knowledge	is.			

	 Another	limitation	is	the	reliance	on	manual	labeling	of	sketches.		This	is	a	very	useful	

simplification	because	open-domain	sketch	recognition	is	an	unsolved	problem	and	because	labeling	

sketches	and	diagrams	(e.g.	with	written	labels	or	spoken	language)	is	commonplace,	especially	in	

science	instruction	where	it	has	been	shown	to	help	students	learn	new	content	(Mason	et	al.,	2013).	

However,	this	means	that	the	reasons	sketches	are	important	for	this	system	are	not	the	same	as	the	

reasons	visual	representations	might	be	important	for	people.		Future	experiments,	such	as	using	an	

oracle	for	language	disambiguation	or	ablating	visual	conceptual	reasoning	only,	could	provide	a	more	

detailed	explanation	for	how	and	why	spatial	representations	are	important.			

	 Despite	these	limitations,	building	systems	that	can	understand	multimodal	instructional	

analogies,	even	if	not	in	exactly	the	same	ways	as	people	do,	is	still	useful	from	an	educational	and	

interactive	perspective.		Interpretation	abilities	are	needed	for	learning	by	reading	and	for	using	

analogies	to	explain	phenomena	to	a	human	collaborator	or	student.					

Chapter	5: Instructional	Analogies	for	Question	Answering	

The	previous	chapter	demonstrated	that	qualitative	science	knowledge	can	be	captured	from	

multimodal	instructional	analogies.		The	evaluation	of	that	knowledge,	however,	was	closely	tied	to	the	

analogies	themselves.		This	chapter	shows	the	extent	to	which	that	knowledge	can	be	used	to	answer	

science	questions	that	were	developed	independently	from	the	instructional	analogies	used	for	learning.		
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5.1 Problem	

Open-domain	question	answering	has	been	an	AI	goal	for	decades	and	it	has	seen	resurgence	since	the	

Watson	Jeopardy!	Challenge	(Ferrucci	et	al.,	2010).		AI	researchers	have	suggested	using	elementary	and	

middle	school	science	exams	as	one	new	benchmark	for	progress	toward	human-level	AI	(Clark,	2015).		

The	reason	these	exams	were	suggested	was	because	they	require	a	great	deal	of	qualitative	and	

common	sense	knowledge.			

	 Instructional	analogies	may	be	a	good	precursor	to	solving	these	questions	because	(i)	they	

model	how	people	are	first	introduced	to	science	topics,	and	(ii)	they	are	good	tools	for	building	

qualitative	knowledge,	which	is	needed	to	answer	many	of	these	questions.			

5.2 Approach	

To	test	the	utility	of	qualitative	knowledge	captured	through	instructional	analogies,	I	gathered	science	

questions	from	the	NY	state	regents	4th	grade,	8th	grade	and	living	environment	exams2	and	the	

Massachusetts	comprehensive	assessment	system	biology	and	physical	sciences	exams3.		Out	of	86	

questions	that	were	related	to	human	biology	or	electrical	energy,	I	identified	14	questions	that	involved	

topics	that	overlapped	with	the	topics	of	the	analogies	used	in	the	previous	chapter	and	did	not	involve	

graph	understanding	or	target	domain	diagram	recognition.		Not	all	analogies	were	represented	in	the	

full	question	set.		Some	topics,	like	enzyme	activation,	were	not	addressed.		Other	topics,	like	

ecosystems	and	interdependence,	were	represented	on	multiple	questions.		The	14	questions	required	

knowledge	about	ecosystems,	cell	structure	and	function,	DNA	structure,	homeostasis,	and	electrical	

circuits.	

																																																													
2	http://www.nysedregents.org/	
3	http://www.doe.mass.edu/mcas/	
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To	limit	the	scope	of	this	question	answering	experiment,	I	made	two	major	simplifications.		

First,	rather	than	attempt	natural	language	understanding	on	questions,	I	manually	translated	them	

from	English	to	CycL.		Each	question	was	translated	into	a	query.		Most	questions	(9)	could	be	

formulated	as	a	query	with	an	open	variable,	where	the	answer	options	were	candidate	bindings	for	

that	variable.		The	rest	of	the	questions	(5)	were	true	statement	questions,	where	each	answer	option	is	

a	ground	query	(i.e.	a	query	with	no	variables).		If	the	question	involved	a	scenario,	the	properties	of	

that	scenario	were	translated	into	CycL	and	stored	in	the	microtheory	for	that	individual	question.		

Second,	I	only	considered	diagram	questions	when	those	questions	did	not	require	target	domain	

recognition	(e.g.	interpreting	an	unlabeled	image	of	a	cell)	or	graph	understanding.	Out	of	the	14	

questions	examined,	3	involved	diagrams	but	only	1	used	a	diagram	that	was	required	to	answer	the	

question.		This	diagram	showed	a	partially	complete	circuit	with	labels.		To	make	the	diagram	usable	for	

question	answering,	I	sketched	it	into	CogSketch	using	the	labels	provided	on	the	test.		The	sketch	was	

then	declared	a	visual	aid	for	the	question.		When	the	model	attempts	to	answer	a	question,	it	searches	

for	a	visual	aid	for	the	question.		If	it	finds	one,	which	only	happened	once	for	this	set	of	questions,	it	

uses	the	same	visual	conceptual	reasoning	(described	in	4.2.2.1)	that	was	used	for	learning	from	

instructional	analogies	to	extract	additional	information	from	the	sketch,	and	stores	the	resulting	facts	

in	the	question’s	microtheory.		This	way,	when	queries	are	executed	to	answer	the	question,	the	

information	from	the	visual	aid	is	visible	from	the	question’s	logical	environment.			

My	approach	for	question	answering	required	reasoning	about	question	types,	computing	

similarity	between	statements,	reasoning	about	object	properties,	reasoning	about	example	situations,	

and	using	abduction.		Each	of	these	abilities	and	the	order	in	which	they	are	executed	in	this	question	

answering	(QA)	system	are	described	next.	
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5.2.1. Detecting	Question	Types	

To	build	a	simple	question	answering	system,	I	needed	a	small	set	of	heuristics	that	were	sufficient	to	

understand	how	the	qualitative	science	knowledge	could	be	used,	rather	than	a	large	set	for	broad	test	

coverage.		To	achieve	this,	I	used	the	analysis	provided	by	Clark	and	colleagues	(Clark	et	al.,	2013)	to	

inform	the	strategies	I	implemented.		They	identified	knowledge	requirements	for	answering	questions	

on	elementary	science	tests	and	eight	different	(but	not	mutually	exclusive)	question	categories.		Only	

some	of	the	categories	identified	by	Clark	and	colleagues	were	present	in	the	current	set	of	14:	object	

property	questions,	example	situation	questions,	and	questions	that	involved	causality	and	processes.			

Object	property	questions	typically	ask	about	the	properties	of	a	class	rather	than	a	specific	

object.		Within	CycL,	such	queries	are	expressed	with	rule	macro	predicates	that	use	universal	

quantification,	e.g.	relationExistsAll	or	relationAllExists.		Such	questions	tend	to	be	about	the	

collection	that	is	universally	quantified.		For	example,	the	question	in	Figure	11	is	an	object	property	

Object	Property	Question	 	
A	function	of	cell	membranes	in	
humans	is	the	 	
a) synthesis	of	the	amino	acids	
b) production	of	energy	
c) replication	of	genetic	material	
d) recognition	of	certain	chemicals	

(queryForQuestion  
  NYSRE-2014-LE-01  
 (relationExistsAll doneBy ?fn      
                    CellMembrane))  
 
(multipleChoiceSingleOptionList  
  NYSRE-2014-LE-01  
  (TheList (MakingFn AminoAcid) 1)) 
(multipleChoiceSingleOptionList  
  NYSRE-2014-LE-01  
  (TheList (MakingFn EnergyStuff) 2)) 
(multipleChoiceSingleOptionList  
  NYSRE-2014-LE-01  
  (TheList Replication-DNA 3))  
(multipleChoiceSingleOptionList  
  NYSRE-2014-LE-01  
  (TheList  
   (IdentifyingAsTypeFn ChemicalObject) 4)) 
 
(correctAnswerChoice NYSRE-2014-LE-01 4) 
 

Figure	11:	An	example	question	in	natural	language	and	in	CycL.	
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question	about	cell	membranes.		If	the	question	query	involves	a	universally	quantified	rule	macro	

predicate,	or	it	is	a	true	statement	question	where	a	particular	collection	is	mentioned	in	more	than	one	

option,	the	QA	system	assumes	it	is	an	object	property	question.	

Example	situation	questions	have	knowledge	associated	with	them	that	are	not	about	the	

multiple	choice	question	ontology.		A	simple	check	in	the	question’s	microtheory	for	facts	other	than	

those	used	to	represent	the	question	itself	(i.e.	predicates	other	than	correctAnswerChoice,		

multipleChoiceSingleOptionList,	and	queryForQuestion)	is	a	good	indicator	that	the	question	

involves	an	example	situation.		Lastly,	there	were	questions	that	involved	causality	and	processes,	but	

they	tended	to	also	be	example	situation	questions,	so	they	were	simply	treated	as	such.				

5.2.2. Interchangeability	of	Statements	

To	deal	with	non-identical,	but	semantically	and	syntactically	similar	statements,	I	developed	a	very	

simple	interchangeability	measure	that	was	inspired	by	the	loose	speak	interpreter	(Fan	et	al.,	2009).		It	

compares	two	statements	and	generates	an	interchangeability	score	if	they	are	related	to	each	other	

using	Cyc’s	collection	and	predicate	hierarchies.		Identical	terms	receive	a	score	of	2.		Terms	that	are	not	

related	receive	a	score	of	0.		Terms	that	are	related	receive	a	score	that	is	inversely	proportional	to	the	

distance	between	them	in	the	genls	(for	collections)	or	genlPreds	(for	predicates)	hierarchy.		Common	

supercollections	are	also	used	to	relate	collections	even	if	one	collection	is	not	a	direct	specialization	of	

the	other.		Terms	that	represent	qualitative	quantities	(e.g.	Many-Quant, Thousands-Quant)	are	

grouped	into	three	general	categories:	small	(e.g.	Few-Quant),	medium	(e.g.	Dozens-Quant),	and	large	

(e.g.	Millions-Quant).		The	interchangeability	score	between	two	qualitative	quantities	is	the	closeness	

between	them	on	the	small,	medium,	large	spectrum.		Terms	that	are	quantitative	values	(e.g.	37,	10)	

are	given	a	score	of	0	unless	they	are	equal,	since	the	difference	between	the	values	is	not	meaningful	
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without	a	frame	of	reference	for	scale.		Interchangeability	of	statements	is	the	average	

interchangeability	of	their	terms,	unless	any	terms	are	unrelated,	in	which	case	the	interchangeability	of	

the	statements	is	zero.		For	example,	the	statements	(causes-SitTypeSitType Poaching 

Extinction) and	(enables-Generic HumanActivity Extinction)	receive	a	score	of	1.1,	because	

the	predicates	are	related	via	genlPreds	hierarchy,	Poaching	is	a	subcollection	of	HumanActivity,	and	

both	statements	have	identical	third	arguments.		The	statements	(causes-SitTypeSitType Poaching 

Extinction)	and	(enables-Generic EatingEvent Extinction)	receive	a	score	of	0	because	

Poaching	and	EatingEvent	are	not	connected	by	a	subcollection	relation.		This	is	a	very	crude	measure	of	

relatedness	but	is	useful	for	evaluating	statements	that	have	been	identified	as	relevant	by	some	other	

means.				

5.2.3. Object	Properties	via	Subparts	

One	heuristic	for	solving	an	object	property	question	is	to	check	for	the	property	in	known	sub	part	

types.		If	a	question	has	been	determined	to	be	an	object	property	question,	then	there	is	a	specific	

collection	associated	with	it.		The	question	in	Figure	11,	for	example,	is	about	the	collection	

CellMembrane.		If	the	property	we	seek	is	known	for	any	sub	part	types	of	CellMembrane	(e.g.	

LipidBilayer),	then	we	can	guess	that	it	also	holds	for	CellMembrane.		If	the	property	we	seek	is	not	

known	for	any	known	sub	part	types,	then	this	heuristic	formulates	alternative	expressions	for	the	failed	

sub	part	query	and	stores	them	away	as	potentially	relevant	patterns	that	can	be	explored	if	no	other	

reasoning	path	leads	to	an	answer.	

	 			The	system	answers	the	question	shown	in	Figure	12	by	reasoning	about	subparts.		Rephrased	

in	terms	of	CycL,	this	question	asks,	“All	cells	have	thousands	of	?x”	which	can	be	represented	with	the	

following	rule	macro	predicate	statements:	
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(relationAllExistsRange physicalParts Cell ?x Thousands-Quant)	

This	fact	is	nowhere	to	be	found	in	the	KB,	so	the	system	begins	by	looking	at	the	subparts	of	Cell.		It	

then	executes	queries	like	

(relationAllExistsRange physicalParts CellNucleus ?x Thousands-Quant),	

(relationAllExistsRange physicalParts Mitochondrion ?x Thousands-Quant),		

and	so	on.		It	still	doesn’t	find	an	answer,	but	it	stores	several	possibly	relevant	patterns	in	working	

memory.		These	patterns	substitute	answer	options	into	the	variable	position,	move	variables,	and	

introduce	new	ones	if	the	expression	is	long	enough	(to	avoid	a	fully	open	and	expensive	query).		One	of	

the	patterns	that	gets	stored	is		

(relationAllExistsRange physicalParts ?x Gene-HereditaryUnit ?y) 

When	queried,	this	pattern	returns		

(relationAllExistsRange physicalParts CellNucleus Gene-HereditaryUnit Many-Quant)		

This	fact	exists	in	the	KB	because	it	was	learned	from	the	cell/earth	analogy.		The	part-for-whole	

substitution	is	undone,	and	we	now	have	the	fact:  

(relationAllExistsRange physicalParts Cell Gene-HereditaryUnit Many-Quant)			

Because	Many-Quant	and	Thousands-Quant	bear	some	resemblance	as	computed	by	the	

interchangeability	algorithm,	and	all	other	terms	in	the	statement	are	equal	to	one	of	the	answer	

options,	this	statement	serves	as	evidence	for	the	first	answer	option:	

(relationAllExistsRange physicalParts Cell Gene-HereditaryUnit Thousands-Quant)		
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Object	Property	Question	(#1)	 	
A	single	human	body	cell	typically	
contains	thousands	of	 	

(relationAllExistsRange  
  physicalParts  Cell  
  ?cell-part Thousands-Quant)) 
 

a)	Genes	
	

Gene-HereditaryUnit 

b)	Nuclei	
	

CellNucleus 

c)	Chloroplasts	
	

Chloroplast 

d)	Bacteria	
	

Bacterium 

Ground	Query	for	Answer	Option	1	 (relationAllExistsRange physicalParts Cell   
    Gene-HereditaryUnit Thousands-Quant) 
 

Ground	Query	for	sub	parts	 (relationAllExistsRange  
    physicalParts CellNucleus   
    Gene-HereditaryUnit Thousands-Quant) 
(relationAllExistsRange  
    physicalParts Mitochondrion   
    Gene-HereditaryUnit Thousands-Quant) 
... 
 

Query	variants	 (relationAllExistsRange  
    physicalParts CellNucleus   
    Gene-HereditaryUnit ?q) 
(relationAllExistsRange  
    physicalParts ?whole   
    Gene-HereditaryUnit ?q) 
... 
 

Result	(one	of	many)	 (relationAllExistsRange  
    physicalParts CellNucleus   
    Gene-HereditaryUnit Many-Quant) 
	

Undo	part-for-whole	substitution	 (relationAllExistsRange  
    physicalParts Cell   
    Gene-HereditaryUnit Many-Quant) 
	
Evidence	for	answer	option	1 

	

Figure	12:	A	subset	of	the	queries	that	are	executed	for	question	1.		Ground	queries	are	first	created	for	all	
answer	options.		Since	none	succeed	for	this	question,	the	QA	system	attempts	queries	with	subpart	types	in	
place	of	the	original	collection.		Since	those	also	fail,	the	QA	system	attempts	query	variants,	with	variables	
introduced	to	increase	the	chances	of	returning	a	result.		One	of	the	results	that	is	returned	is	that	Nuclei	have	
many	genes.		This	is	similar	to	the	ground	query	for	answer	option	1,	and	is	therefore	used	as	evidence	for	that	
answer.	
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5.2.4. Object	Properties	via	Base	Domain	Speculation	

Another	approach	for	answering	object	property	questions	is	to	think	of	the	object	in	terms	of	a	prior	

analogy.		Given	an	object	property	question	about	some	collection	C	and	some	property	P,	if	there	exists	

a	known	analogical	mapping	where	C	mapped	to	C’	and	C’	has	property	P,	then	the	system	assumes	that	

C	also	has	that	property.		This	is	a	risky	heuristic	and	is	therefore	assigned	a	high	cost	so	that	the	solver	

only	attempts	this	if	finding	an	answer	in	the	original	domain	fails.		If	C’	does	not	have	property	P,	then	

variants	of	the	original	query,	with	C’	in	place	of	C,	are	stored	as	potentially	relevant	query	patterns	that	

might	be	useful	as	a	last	resort.				

	 For	example,	the	system	uses	base	domain	speculation	to	answer	the	question	shown	in	Figure	

11.	The	question	asks	about	the	function	of	cell	membranes.		From	a	prior	analogy	(i.e.	the	cell/city	

analogy),	the	system	finds	that	at	one	point,	the	collection	CellMembrane	corresponded	to	the	

collection	Border.		The	system	can	search	the	knowledge	base	for	functions	of	borders	to	see	if	there	

are	functions	that	are	similar	(i.e.	have	a	high	interchangeability	score)	to	any	of	the	answer	options.		

For	this	question,	the	ground	queries	are	executed	with	the	border	collection	replacing	the	cell	

membrane	collection.		These	queries	do	not	return	any	results,	so	query	variants	(i.e.	with	different	

open	variables)	are	explored.		One	of	the	results	that	is	found	involves	the	relationship	between	borders	

and	border	check	events:		

(relationExistsAll preActors BorderCheckEvent Border)	

When	this	fact	is	transformed	back	into	the	target	domain,	it	becomes		

(relationExistsAll preActors BorderCheckEvent CellMembrane) 
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This	intermediate	fact	doesn’t	make	very	much	sense	because	the	system	does	not	create	an	analogy	

skolem	for	BorderCheckEvent.		However,	this	is	part	of	the	advantage	of	base	domain	speculation.		It	

allows	the	system	to	make	big	inference	leaps	that	are	guided	by	prior	analogies.		The	system	proceeds	

by	computing	interchangeability	scores	between	all	the	facts	found	from	query	variants	and	the	answer	

options.		The	fact	involving	BorderCheckEvent	stands	out	because	it	is	interchangeable	with	answer	

option	4:	

(relationExistsAll doneBy (IdentifyingAsTypeFn ChemicalObject) CellMembrane) 

(relationExistsAll preActors BorderCheckEvent CellMembrane) 

These	two	facts	return	a	non-zero	interchangeability	score	because	BorderCheckEvent	is	a	

specialization	(i.e.	subcollection	of)	Inspecting	and	Identifying,	which	are	supercollections	of	

(IdentifyingAsTypeFn ChemicalObject).		Additionally,	doneBy	is	a	specialization	of	preActors.		The	

rest	of	the	terms	are	identical,	so	the	interchangeability	returns	a	non-zero	value,	indicating	that	the	

second	fact	can	be	used	as	evidence	to	support	answer	option	4.		This	causes	the	involvement	of	

borders	in	border	check	events	to	be	used	as	evidence	that	cell	membranes	identify	chemical	objects.			

5.2.5. Example	Situation	Analysis	

Example	situation	questions	set	up	a	scenario	for	the	reader	and	ask	something	about	that	scenario.		In	

the	question	representation	used	here,	that	means	that	the	question’s	microtheory	has	extra	knowledge	

in	it.		The	way	to	answer	these	questions	usually	requires	filling	in	missing	pieces	with	background	

knowledge.		Cyc’s	rule	macro	predicates	are	very	useful	for	this	and	are	just	the	types	of	representations	

that	are	learned	from	the	instructional	analogy	interpretation	model.			
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	 To	apply	background	knowledge	to	scenarios,	I	implemented	forward	inference	methods	for	

rule	macro	predicates	(see	examples	in	Table	1)	along	with	the	predicates	that	represent	qualitative	

proportionalities	(i.e.	qprop,	qprop-).		These	methods	search	the	local	context	for	instances	of	

universally	quantified	collections	and	existentially	quantified	collections	and	asserts	the	binary	relation	

between	them.		If	no	existential	instance	is	found	and	there	are	no	other	potential	candidates	(i.e.	

instances	whose	collections	are	unknown),	then	a	speculative	instance	is	created.		In	this	way,	the	

application	of	background	knowledge	enables	the	creation	of	new	terms	that	are	assumed	to	be	there	

even	if	they	were	not	mentioned	explicitly.		For	rule	macro	predicates,	the	universal	and	existential	

quantifiers	are	explicit	based	on	the	argument	position.		For	qualitative	reasoning	predicates,	I	chose	to	

treat	them	as	if	the	cause	was	universally	quantified	and	the	effect	was	existentially	quantified.		For	

example,	given	a	type	level	negative	qualitative	proportionality	between	the	rate	of	change	in	an	

ecosystem	(the	cause)	and	the	stability	of	that	ecosystem	(the	effect),	then	the	application	method	for	

this	predicate	will	seek	instances	of	changes	in	an	ecosystem.		If	any	are	found,	then	an	instance	level	

negative	qualitative	proportionality	between	the	rate	of	that	change	and	the	stability	of	the	ecosystem	

are	asserted.		This	is	how	some	of	questions	related	to	ecosystems	and	interdependence	are	solved.				
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	 For	example,	one	of	the	questions	(	

Figure	13)	presents	an	example	situation	about	human	population	affecting	predator	populations.		The	

first	row	of	the	table	shows	the	scenario	as	it	is	described	in	the	question	(left)	and	the	CycL	

Example	Situation	Question	(#4)	 	
Human	population	growth	has	led	
to	a	reduction	in	the	populations	of	
predators	throughout	natural	
ecosystems	across	the	United	
States.	Scientists	consider	the	loss	
of	these	predators	to	have	a	
	
	

(isa this-ecosystem Ecosystem) 
(consumerInEcosystem this-ecosystem these-humans) 
(consumerInEcosystem this-ecosystem other-predators) 
(eatsWillingly other-predators other-prey) 
(isa human-pop-growth IncreaseEvent) 
(isa human-pop-growth IntrinsicStateChangeEvent) 
(objectOfStateChange human-pop-growth this-ecosystem) 
(objectOfStateChange human-pop-growth other-predators) 
(isa predator-decline DecreaseEvent) 
(isa predator-decline IntrinsicStateChangeEvent) 
(objectOfStateChange predator-decline this-ecosystem) 
(causes-EventEvent human-pop-growth predator-decline) 
 

	
a)	positive	effect,	because	an	
increase	in	their	prey	helps	to	
maintain	stability	in	the	ecosystem	
	

 
(and (causes-Event predator-decline ?prey-increase)                                                                  
(isa ?prey-increase IncreaseEvent)                                                              
(positivelyInfluencedBy  

  ((QPQuantityFn Stability)  
     this-ecosystem) 
  (RateFn ?prey-increase))) 

                                                          
 

	b)	positive	effect,	because	the	
predators	usually	eliminate	the	
species	they	prey	on	
	

(and (causes-Event predator-decline ?ext)                                                                
(isa ?ext Extinction)                                                               
(positivelyInfluencedBy  
((QPQuantityFn Stability)  
     this-ecosystem)                                                          
(RateFn ?ext))) 

                                                           
                                                          

c)	negative	effect,	because	
predators	have	always	made	up	a	
large	portion	of	our	food	supply	
	

(and (eatsWillingly these-humans ?food-supply)                                     
(negativelyInfluencedBy                                                                     

         (AmountOfFn ?food-supply)                                                                 
         (RateFn predator-decline))) 
 
                                                         

d)	negative	effect,	because	
predators	have	an	important	role	in	
maintaining	stable	ecosystems	

(negativelyInfluencedBy                                                            
   ((QPQuantityFn Stability) this-ecosystem)                                                         
   (RateFn predator-decline)) 
 

	

Figure	13:	An	example	question	about	ecosystems.		The	right	hand	column	shows	the	CycL	representation	of	the	scenario	
and	the	answer	options.			
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representation	for	that	scenario	(right).		The	answer	options	in	English	and	in	CycL	are	shown	below	the	

scenario	description.		The	system	answers	this	question	by	applying	background	knowledge	into	the	

example	situation.		Background	knowledge	is	retrieved	by	searching	the	KB	for	rule	macro	predicates	

and	qualitative	proportionalities	that	involve	collections	mentioned	in	the	scenario.		In	this	case,	the	

collections	mentioned	in	the	scenario	are:	Ecosystem,	IntrinsicStateChangeEvent,	IncreaseEvent,	

and	DecreaseEvent.		One	of	the	qualitative	proportionalities	found	in	the	KB	was	captured	from	the	

analogy	about	ecosystems	from	Chapter	4:		

(qprop- ((QPQuantityFn Stability) Ecosystem)  

        (RateFn (IntrinsicStateChangeOfFn Ecosystem)))	

	

	This	states	that	the	rate	of	change	in	an	ecosystem	negatively	influences	the	stability	of	that	ecosystem.		

The	forward	inference	methods	developed	for	this	system	treat	qualitative	proportionalities	as	being	

type-level	statements	where	the	cause	is	universally	quantified	and	the	effect	is	existentially	quantified:	

(relationExistsAll qprop- ((QPQuantityFn Stability) Ecosystem)  

(RateFn (IntrinsiceStateChangeOfFn Ecosystem)) 

	

This	statement	means	that	for	all	ecosystem	changes,	there	exists	an	ecosystem	that	is	negatively	

affected	by	it.		Note	that	the	rule	macro	predicate	for	representing	this	qualitative	proportionality	is	

actually	underspecified	because	it	does	not	say	that	the	change	to	a	specific	ecosystem	negatively	

affects	the	stability	of	the	same	ecosystem.		However,	the	forward	inference	methods	attempt	to	

resolve	this	issue	by	hypothesizing	which	entities	(if	any)	in	the	local	context	are	the	best	candidates	for	

the	existential	variable.		To	apply	this	knowledge	to	the	current	question	scenario,	the	system	first	looks	

for	instances	of	(IntrinsicStateChangeOfFn Ecosystem).		The	question	does	not	explicitly	state	that	
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human	population	growth	and	the	decline	of	predators	are	instances	of	(IntrinsicStateChangeOfFn 

Ecosystem),	but	it	does	say	that	they	are	both	instances	of	IntrinsicStateChangeEvent	and	that	the	

objectOfStateChange	is	an	instance	of	Ecosystem	(Figure	13).		The	system	uses	this	knowledge	and	

the	knowledge	of	IntrinsicStateChangOfFn	as	a	collection	denoting	function	in	the	KB	to	infer	that	

human	population	growth	and	the	decline	of	predators	are	indeed	instances	of	

(IntrinsicStateChangeOfFn Ecosystem).		Next,	the	system	looks	for	something	in	the	scenario	that	

might	be	an	instance	of	((QPQuantityFn Stability) Ecosystem).		It	first	searches	for	instances	of	

((QPQuantityFn Stability) Ecosystem).		It	finds	none,	so	it	proceeds	by	searching	for	instances	of	

Ecosystem	and	finds	the	one	described	in	this	question	scenario.		Since	there	is	only	one	ecosystem	in	

this	question	scenario,	the	system	assumes	that	this	is	the	entity	that	the	background	knowledge	should	

be	applied	to.		If	there	were	multiple	instances	of	ecosystem,	the	system	would	use	the	number	of	

common	relations	between	each	instance	of	Ecosystem	and	each	instance	of	

(IntrinsicStateChangeOfFn Ecosystem)	to	guess	which	instances	to	choose.		If	no	instances	of	

Ecosystem	were	found,	then	the	system	would	create	a	speculative	instance	of	Ecosystem.		For	this	

question,	the	type-level	qualitative	proportionality	from	background	knowledge	is	applied	to	the	

scenario,	which	results	in	the	following	instance-level	statements:	

(isa human-pop-growth (IntrinsicStateChangeOfFn Ecosystem)) 

(isa predator-decline (IntrinsicStateChangeOfFn Ecosystem)) 

(qprop- ((QPQuantityFn Stability) this-ecosystem) (RateFn human-pop-growth)) 

(qprop- ((QPQuantityFn Stability) this-ecosystem) (RateFn predator-decline))) 

 

The	resulting	statements	are	asserted	into	the	question	scenario.		Unlike	statements	in	background	

knowledge,	these	statements	are	about	specific	entities	rather	than	collections.		Now	the	question	

answering	process	continues	with	more	knowledge	than	it	started	with.		When	the	system	directly	



93	
	
queries	each	of	the	answer	options,	option	D	succeeds	because	pre-existing	rules	(from	the	QP	

ontology)	enable	the	system	to	infer	positivelyInfluencedBy	and	negativelyInfluencedBy	

statements	based	on	qprop	and	qprop-	statements,	respectively.				

5.2.6. Abductive	Hypotheses	

Abduction	is	potentially	useful	for	answering	object	property	questions	and	scenario	questions.		In	both	

cases,	this	system	looks	for	known	facts	that	might	explain	or	support	any	of	the	answer	options.		This	

was	implemented	by	writing	rules	to	capture	the	requirements	for	particular	functions	and	the	existence	

of	part-whole	relationships	to	explain	the	collection	membership	of	a	particular	item	(Figure	14).			

For	function	requirements,	rules	state	that	part-whole	relationships	between	entities	could	suggest	that	

the	part	is	the	direct	object	in	an	action	completed	by	the	whole.		This	was	implemented	for	three	

classes	of	functions	(based	on	the	types	of	functions	that	were	observed	in	the	11	instructional	

analogies	used	in	Chapter	4	and	the	question	set):	making	things	available,	changing	things,	and	taking	

care	of	things	(e.g.	protecting,	storing).		The	rationale	is,	if	some	collection	C	typically	has	sub	parts	C’,	

then	that	can	be	used	as	evidence	to	suggest	that	instances	of	C	perform	actions	on	instances	of	C’,	such	

as	making	instances	of	C’	available,	taking	care	of	instances	of	C’	and	changing	instances	of	C’.		For	

example,	batteries	have	energy.		Knowing	this	might	suggest	that	batteries	convert	energy,	make	energy	

available,	or	store	energy.		For	example,	the	question	in	Figure	15	asks	about	the	function	of	the	cell	

nucleus.		From	the	cell/city	analogy,	the	system	knows	that	one	of	the	functions	of	the	cell	nucleus	is	

that	it	controls	the	cell.		However,	this	fact	is	not	useful	for	this	particular	question.		Instead,	the	system	

checks	if	any	of	the	answer	options	can	be	assumed	via	abduction.		Options	2	and	3	can	be	assumed	if	

the	things	made	available	or	stored	are	known	to	be	parts	of	the	cell	nucleus.		From	the	cell/earth	



94	
	
analogy,	the	system	knows	that	genes	tend	to	be	parts	of	cell	nuclei	and	therefore	assumes	that	option	

3	is	the	correct	answer.	

For	explaining	the	collection	membership	of	a	particular	item,	one	rule	was	used	to	state	that	

given	some	term	P	that	is	part	of	some	other	term	W,	and	a	type-level	part-whole	relationship	between	

W-TYPE	and	P-TYPE,	then	there	is	an	abductive	hypothesis	that	P	is	an	instance	of	P-TYPE.		This	is	useful	

for	questions	that	ask	about	parts	of	things	in	a	particular	situation	(e.g.	question	13,	Table	14).		When	

given	a	situation	where	there	is	an	object	(e.g.	a	circuit)	with	parts	that	are	unlabeled,	the	system	

assumes	that	the	unlabeled	part	belongs	to	a	collection	that	is	known	to	be	a	subpart	type	of	the	

original	object	(e.g.	battery	or	wire).		

	

Explaining	functions:		

(abductiveHypothesis (relationExistsAll ?role ?fn ?whole-type)  
(and (unifies ?fn (event-fn? ?part-type)) 

  (or (resultGenl ?event-fn InstrinsicStateChangeEvent) 
   (resultGenl ?event-fn MakingSomethingAvailable) 
   (resultGenl ?event-fn TakingCareOfSomething)))) 

(partTypes-transitive ?whole-type ?part-type)))) 
 

Explaining	collection	membership:	

(abductiveHypothesis (isa ?term ?part-type)  
 (and (physicalParts ?whole ?term) 
  (isa ?whole ?whole-type) 
  (partTypes-transitive ?whole-type ?part-type))) 
 

Figure	14:	Abductive	hypothesis	statements	used	to	assume	functions	and	collection	membership.		These	are	
implemented	in	horn	clauses,	with	the	first	abductive	hypothesis	statement	broken	into	three	separate	horn	
clauses	to	handle	the	disjunction.		In	English,	the	first	states	that	if	something	has	subparts,	then	a	reasonable	
hypothesis	is	that	it	can	make	the	subparts	available,	change	the	subparts,	or	take	care	of	them.		For	example,	
knowing	have	batteries	have	energy	suggests	that	batteries	make	energy	available.	The	second	states	that	if	there	
is	something	that	has	subparts	and	it	is	known	to	have	subparts	of	a	particular	type,	then	we	can	assume	that	the	
subparts	are	of	that	subpart	type.		For	example,	if	there	is	a	circuit	with	a	hidden	part,	and	we	know	that	circuits	
tend	to	have	wires,	then	a	reasonable	hypothesis	is	that	the	hidden	part	might	be	a	wire.	
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Object	Property	Question	(#8)	 	
Which	of	the	following	is	a	function	
of	the	nucleus	in	organism	2?	
	

(relationExistsAll performedBy ?fn CellNucleus) 
 

a)	absorbing	sunlight	 (SubcollectionOfWithRelationToTypeFn  
   AbsorptionEvent objectActedOn Sunlight)                                                         
 

b)	releasing	usable	energy	 (MakingAbstractAvailableFn EnergyStuff)                                                           
                                                          

c)	storing	genetic	material	 (StoringFn Gene-HereditaryUnit) 
                                                       

d)	producing	food	molecules	 (MakingFn Food) 

	
Figure	15:	An	object	property	question	that	about	the	function	of	the	cell	nucleus.		
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5.2.7. Solving	Sequence	

The	sequence	for	attempting	to	answer	a	question	is	illustrated	in	Figure	16.		The	first,	most	basic	

approach	is	to	execute	the	ground	queries	for	the	question	directly.		The	ground	queries	for	each	

question	are	either	a	unification	of	the	answer	options	and	the	open	question	query	(as	would	be	the	

case	for	the	question	shown	in	Figure	11),	or	each	answer	option	if	the	question	is	a	true	question	

statement	(since	each	answer	option	is	a	fully	ground	statement).		This	step	also	includes	abduction.		So,	

if	the	ground	query	is	explicitly	known	in	the	KB	or	if	it	can	be	assumed	via	abduction,	then	the	query	

	

	Figure	16:	An	overview	of	how	multiple	choice	questions	are	answered.		The	first	step	executes	the	ground	
queries	directly.		If	an	answer	is	found	(following	the	bold	arrow),	then	the	process	is	done.		If	not,	it	continues	
with	a	basic	analysis	of	the	question	to	determine	if	it	is	about	object	properties	or	an	example	situation.		For	
each,	different	strategies	are	employed.	The	object	property	strategy	uses	subparts	and	base	domain	entities	to	
come	up	with	variants	of	the	original	query	by	placing	variables	in	different	argument	positions.		If	an	answer	is	
not	found	directly	from	sub	parts	or	base	domain	entities,	the	system	examines	the	query	variants	and	used	them	
to	compute	evidence	for	each	of	the	answer	options.	
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will	succeed.		If	any	of	these	queries	succeed,	then	the	system	returns	the	answer	(following	the	bold	

arrow	in	Figure	16).		If	not,	it	proceeds	to	the	next	step,	which	involves	detecting	the	question	type.	

	 If	a	question	type	is	detected,	the	corresponding	strategy	is	triggered.		As	described	above,	

these	strategies	include	looking	at	subpart	types	and	base	domain	items	for	object	properties,	and	

importing	background	knowledge	for	example	situation	questions.		For	object	properties,	if	the	property	

in	question	is	found	in	either	a	sub	part	type	or	in	a	corresponding	base	term,	then	the	system	has	found	

its	answer.		If	not,	it	generates	variants	of	the	subpart	and	base	domain	queries	by	inserting	variables	at	

different	argument	positions.		These	non-ground	expressions	are	marked	as	possibly	relevant	query	

patterns,	which	are	not	executed,	but	stored	away	as	a	last	resort	if	other	reasoning	paths	fail.		For	

situation	questions,	background	knowledge	in	the	form	of	rule	macro	predicates	and	qualitative	

proportionalities	are	imported	into	the	question’s	reasoning	environment.		As	mentioned	earlier,	

applying	background	knowledge	results	in	the	existence	of	new	statements,	and	sometimes	in	the	

existence	of	new	terms.		This	means	that	the	ground	queries	for	the	question	should	be	attempted	

again,	in	case	the	answer	was	brought	in	from	the	background.		If	any	of	the	ground	queries	succeed,	

the	system	is	done.		If	not,	it	continues	to	the	final	heuristic,	which	looks	at	the	possibly	relevant	query	

patterns	stored	away	earlier.	

	 The	query	patterns	that	have	been	marked	as	possibly	relevant	will	include	statements	about	

subpart	types	and	corresponding	base	concepts.		It	will	also	include	variations	of	true	statement	options	

that	have	failed	and	variations	of	the	original	ground	queries.		This	is	essentially	a	purely	syntactic	way	

of	finding	statements	that	may	be	useful,	but	are	not	found	by	direct	queries.		For	each	statement	that	is	

returned	by	the	patterns,	the	interchangeability	score	is	computed	between	it	and	all	of	the	answer	

options.		The	scores	for	each	answer	option	are	summed	as	an	estimate	of	the	system’s	confidence	in	
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that	answer	choice.		Once	all	the	statements	are	evaluated,	the	answer	choice	with	the	highest	

confidence	is	chosen	as	the	answer.		The	question	answering	process	fails	if	the	query	variants	do	not	

return	any	results	or	the	results	bear	no	resemblance	to	any	of	the	answer	options	(i.e.	the	

interchangeability	scores	are	all	zero).			

5.3 Evaluation	

Using	the	heuristics	described	above,	the	knowledge	captured	from	the	instructional	analogies	in	

Chapter	4	was	sufficient	for	answering	11	out	of	14	questions.		This	included	4	out	of	5	questions	on	

ecosystems,	5	out	of	6	questions	on	the	cell	and	its	parts,	and	2	out	of	2	questions	on	circuits	(Table	14).	
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#	 Question	Prompt	--	Correct	Answer	 Correct?	 Approach	

1	 A	single	human	body	cell	typically	contains	thousands	of	
--	genes	

y	 object	property	via	sub	
parts	+	interchangeability	

2	 A	function	of	cell	membranes	is	humans	is	the	--	
recognition	of	chemicals	

y	 object	property	via	base	
domain	+	
interchangeability	

3	 Which	statement	best	describes	the	organelles	in	a	cell?	
--	they	work	together	

y	 direct	query	+	
interchangeability	

4	 Human	population	growth	has	led	to	a	reduction	in	the	
populations	of	predators	throughout	natural	ecosystems	
across	the	United	States.	Scientists	consider	the	loss	of	
these	predators	to	have	a		--	negative	effect	on	stability	

y	 import	background	QP	
knowledge	+	inference	

5	 A	variety	of	pear	tree,	known	as	Bradford,	was	originally	
introduced	into	the	eastern	United	States	in	the	1960s.		
Today,	this	tree	is	crowding	out	other	plants	in	these	
states.		This	situation	best	illustrates	--	negative	effect	
on	stability	

y	 import	background	QP	
knowledge	+	inference	

6	 If	the	producers	in	a	food	web	were	removed,	which	of	
the	following	changes	would	most	likely	occur?	–	
collapse	because	ecosystems	require	producers	

y	 direct	query	

7	 Within	a	prey	population,	which	of	the	following	is	most	
immediately	affected	by	the	arrival	of	a	new	predator?		-
-	population	of	predator	influences	death	rate	

n	 import	background	QP	
knowledge,	but	didn't	
have	QP	relationship	
impacting	population	

8	 Which	of	the	following	is	a	function	of	the	nucleus	in	
organism	2?	--	storing	genetic	material	

y	 abduction	

9	 In	the	three	organisms,	what	are	synthesized	by	the	
ribosomes?	--	protein	

y	 direct	query	+	
interchangeability	

10	 Which	of	the	following	best	describes	the	producers	in	a	
terrestrial	food	web?	--	producers	convert	solar	energy	
to	chemical	energy	

y	 direct	query	

11	 Which	of	the	following	is	the	best	example	of	the	human	
body	maintaining	homeostasis?	--	breathing	during	
exercise	

n	 import	background	
knowledge,	but	didn't	
have	a	way	of	inferring	
process	type	

12	 In	a	sample	of	double-stranded	DNA,	30%	of	the	
nitrogenous	bases	are	thymine.	What	percentage	of	the	
nitrogenous	bases	in	the	sample	are	adenine?	--	0.3	

n	 import	background	
knowledge,	but	no	
explicit	equals	relation	

13	 Jamal	wants	to	make	an	electrical	circuit,	but	he	only	has	
the	objects	shown	below.		Which	of	the	following	must	
Jamal	also	have	to	make	an	electrical	circuit?	--	battery	

y	 abduction	

14	 The	diagram	below	shows	a	project	that	a	student	made	
to	test	an	electrical	circuit.		Part	of	the	electrical	circuit	is	
underneath	the	board.		When	the	student	connects	the	
two	nails	using	a	wire,	the	bulb	lights	up.		Which	of	the	
following	must	be	underneath	the	board?	--	battery	and	
wires	

y	 abduction	

Table	14:	Questions	used	to	evaluate	qualitative	science	knowledge.			
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	 A	variety	of	strategies	were	used	to	arrive	at	answers.		In	some	cases,	direct	queries	sufficed.		

Question	10,	for	example,	is	a	true	statement	question	where	one	of	the	options	described	the	function	

of	producers:	that	they	convert	solar	energy	to	chemical	energy.		In	CycL,	this	is	formulated	as	a	rule	

macro	predicate	using	a	primary	actor	role	relation:	

(relationExistsAll  
   doneBy 
   (SubcollectionOfWithRelationToTypeFn 
    (SubcollectionOfWithRelationToTypeFn  
          IntrinsicStateChangeEvent toState ChemicalEnergy) 
    objectOfStateChange SolarEnergy) 
   Autotroph) 
	

	This	fact	was	captured	from	by	interpreting	the	ecosystem	analogy	from	Chapter	4,	so	a	direct	query	

was	sufficient	for	answering	the	question.			

	 Abduction	was	very	useful	for	scenario	questions	where	there	was	a	missing	or	unlabeled	entity	

and	the	question	asked	for	a	collection	for	that	entity	(questions	13,	14).		The	second	abduction	rule	in	

Figure	14	was	responsible	for	solving	these	questions.	Since	batteries	and	wires	are	known	to	be	parts	of	

circuits,	it	was	assumed	that	the	answer	options	that	mentioned	those	parts	were	correct.		However,	

the	background	knowledge	was	not	definitive	in	terms	of	how	many	of	each	part	type	a	circuit	had,	so	it	

could	have	incorrectly	answered	another	battery.		But,	since	items	that	were	already	in	the	scenario	

were	not	also	answer	options,	the	system	was	able	to	correctly	choose	the	right	answer.		Clearly,	the	

background	knowledge	is	not	as	deep	as	it	should	be,	but	for	these	questions,	it	is	sufficient.		Essentially,	

the	question	is	asking	the	reader:	what	are	the	required	parts	of	this	object?		Whatever	is	missing	is	the	

answer.			
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	 Background	knowledge	was	useful	for	two	of	the	questions	about	ecosystems	and	

interdependence.		The	ecosystem/web	analogy	in	Chapter	4	was	interpreted	using	qualitative	modeling	

of	an	ad	hoc	student	web	(i.e.	a	situation	where	students	gather	around,	connected	by	strings	to	mimic	

an	ecosystem).		The	primary	inference	is	that	changes	within	the	web	decrease	stability.		The	causal	

relationship	between	ecosystem	changes,	and	the	stability	of	the	ecosystem	was	captured	as	a	result	of	

interpreting	this	analogy.		When	presented	with	a	scenario	question	about	an	ecosystem	and	some	

change	happening	within	it	(i.e.	questions	4,	5,	7),	the	system	infers	that	the	change	is	negatively	

influencing	ecosystem	stability.		This	relationship	is	very	simple,	yet	it	is	sufficient	for	answering	

questions	4	and	5.	

	 As	noted	earlier,	object	property	questions	could	be	solved	by	looking	at	subpart	types	and	by	

speculating	about	known	base	domains.		Detecting	object	properties	via	subparts	was	used	to	answer	

question	1	(Figure	12)	and	detecting	object	properties	via	base	domain	speculation	was	used	to	answer	

question	2	(Figure	11).	

5.4 Discussion	

The	experiment	in	this	chapter	supports	claim	2	of	this	thesis.		It	demonstrates	that	qualitative	science	

knowledge	captured	from	multimodal	instructional	analogies	can	be	used	in	combination	with	very	basic	

question	answering	strategies	to	answer	questions	on	middle	school	science	exams.		The	question	

answering	strategies	developed	for	this	experiment	along	with	background	knowledge	and	ontologies	

within	Cyc,	were	used	to	answering	11	out	of	14	questions.		The	impact	of	the	specific	content	learned	

from	the	instructional	analogies	in	Chapter	4	can	be	evaluated	by	making	that	content	unavailable	

during	question	answering.		After	removing	the	knowledge	learned	from	those	analogies	(but	leaving	in	

all	other	biology	and	electricity	knowledge	in	ResearchCyc),	the	QA	system	was	unable	to	answer	any	of	
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the	14	questions	examined	here.		This	demonstrates	that	while	the	ontologies	in	Cyc	are	extremely	

useful	and	necessary,	they	need	to	be	complemented	with	general,	non-technical	statements	about	the	

domain,	like	the	ones	that	were	captured	from	instructional	analogies.		They	also	need	to	be	

complemented	with	QA	strategies	like	the	ones	presented	in	this	chapter.	

	 There	are,	however,	several	limitations	to	this	claim.		The	first	has	to	do	with	coverage.		Out	of	

the	86	test	questions	that	were	found	to	involve	human	biology	or	electricity,	only	14	had	answers	that	

overlapped	with	the	target	knowledge	of	the	analogies.		Around	16%	coverage	is	modest,	but	also	not	

surprising	when	one	considers	all	the	other	topics	that	appear	on	these	exams.		In	the	full	set	of	86	

questions	on	human	biology	and	electrical	energy,	there	were	many	questions	on	genetics,	causal	

reasoning	about	experiments,	specific	biological	taxa,	class	definitions	for	specific	types	of	cells,	

properties	of	everyday	objects	(e.g.	conductance)	and	many	other	topics	not	addressed	by	any	of	the	

analogies	in	the	FAR	guide.		However,	it’s	not	the	case	that	the	FAR	guide	topics	are	rare.		They	include	

very	basic	fundamental	ideas	in	biology	and	electricity,	it	is	just	that	it	would	be	very	unusual	for	11	

analogies	to	cover	a	very	large	set	of	questions	at	all	the	levels	of	detail	that	they	are	asked.		The	

analogies	address	basic	conceptual	knowledge	about	several	topics	with	the	expectation	that	more	

detailed	knowledge	is	added	later,	which	is	not	currently	done	in	this	interpretation	model.	The	

analogies	do	not	dive	into	technical	detail	and	they	assume	that	the	learner	has	a	significant	amount	of	

commonsense	knowledge.		The	commonsense	knowledge	assumption	is	fine	for	people,	but	a	big	

problem	for	intelligent	systems.		In	short,	there	are	topics	on	both	ends	of	the	technical	spectrum	(from	

basic	commonsense	knowledge	to	technical	knowledge	of	specific	processes)	that	are	missed	by	these	

instructional	analogies.			
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The	second	limitation	has	to	do	with	how	qualitative	science	knowledge	is	actually	used.		If	it	

cannot	be	deployed	properly,	then	it’s	not	worth	very	much.		The	three	questions	that	the	QA	system	

could	not	answer	point	to	some	of	the	reasoning	abilities	that	are	lacking	in	this	system,	and	are	taken	

for	granted	when	people	use	qualitative	knowledge	to	answer	questions.		Question	7	was	a	situation	

question,	and	asked	what	is	immediately	affected	by	the	arrival	of	a	new	predator.		Based	on	the	

knowledge	gained	from	the	ecosystem/web	analogy,	there	is	information	in	the	KB	about	producers,	

consumers,	that	predators	eat	prey,	and	that	changes	in	the	ecosystem	negatively	impact	stability.		

What’s	missing	the	very	basic	causal	information	between	eating,	death,	and	population.		Background	

knowledge	was	imported	correctly,	but	there	was	no	causal	knowledge	about	the	impact	predators	have	

on	the	population	of	their	prey.		A	more	sophisticated	model	of	the	dynamics	in	an	ecosystem	would	be	

needed	to	capture	that.		Those	models	would	also	need	to	be	tied	with	our	most	general	models	of	how	

the	world	works	in	order	to	be	useful.		Question	11,	for	example,	provides	four	situations	and	asks	which	

one	is	the	best	example	of	homeostasis.		Answering	this	question	requires	an	understanding	of	the	

notion	of	competing	influences	or	feedback	systems.		The	simple	forward	inference	method	

implemented	in	this	QA	system	is	insufficient	for	this	question	because	instead	of	finding	quantities	and	

asserting	qualitative	relationships	about	them,	this	question	requires	detecting	relationships	and	

asserting	the	process	or	situation	type.		This	is	akin	to	model	formulation	in	general,	something	that	was	

used	for	interpreting	analogies	but	not	for	answering	questions	about	them.		Lastly,	question	12	was	

about	the	structure	of	an	example	DNA	molecule.		From	the	DNA/clothespin	analogy,	the	system	knew	

that	adenine	always	bonds	with	thymine	and	that	guanine	always	bonds	with	cytosine.		The	connection	

between	that	knowledge	and	the	fact	that	in	a	given	molecule	the	number	of	adenine	molecules	should	

be	equal	to	the	number	of	thymine	molecules	was	missing.		These	questions	illustrate	the	rich	
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interaction	between	qualitative	science	knowledge	and	qualitative	commonsense	knowledge	that	is	

needed	to	pass	this	test.	

Another	limitation	to	this	claim	is	the	absence	of	natural	language	understanding	in	question	

interpretation.		To	limit	the	scope	of	this	thesis,	I	chose	to	manually	translate	the	questions	from	English	

to	CycL.		This	proved	to	be	very	difficult	because	there	are	numerous	ways	to	represent	things	using	

CycL,	and	very	often,	the	statements	defined	to	represent	knowledge	are	underspecified	or	not	

completely	accurate	(Fan	et	al.,	2009).		However,	as	seen	in	the	analysis	of	analogies	in	the	FAR	guide,	

sometimes	the	loose	use	of	language	is	a	feature	not	a	bug.		Inanimate	things	or	processes	are	

sometimes	described	using	language	that	would	suggest	they	are	living	agents.		For	instance,	organelles	

don’t	really	engage	in	coordinated	group	activities	in	the	sense	that	Cyc	defines	that	type	of	activity.	This	

is	by	design	because	the	analogy	uses	a	level	of	abstraction	that	is	amenable	to	cross-domain	mappings.		

Using	this	level	of	abstraction,	while	at	the	same	time	adhering	to	the	representational	constraints	(e.g.	

predicate	argument	type	constraints)	within	Cyc,	remains	a	challenge.							

Chapter	6: Related	Work	

Analogical	reasoning	in	AI	systems	has	a	rich	history	with	many	different	applications.		Researchers	often	

differ	in	how	they	define	and	use	analogical	reasoning,	with	some	developing	methods	for	solving	

traditional	analogy	word	problems	(i.e.	A:B::C:D),	others	using	it	to	perform	case-based	reasoning,	and	

others	who	use	it	as	a	general	measure	of	relational	similarity.											 	

6.1 Problem	Solving	and	Question	Answering	

Most	analogical	problem	solvers	work	by	transferring	prior	knowledge	to	a	new	scenario.		Early	work	by	

Burstein	(1985)	analyzed	human	tutoring	protocols	to	propose	a	model	for	learning	by	analogy.		This	
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model	was	implemented	in	a	system	that	used	stored	planning	knowledge	to	incrementally	generate	

hypotheses	for	how	to	solve	computer	programming	(i.e.	variable	assignment)	problems.		The	PRODIGY	

planning	architecture	used	a	derivational	analogy	engine	(Veloso	&	Carbonell,	1993)	to	learn	control	

knowledge	for	future	situations.		When	new	planning	problems	arose,	PRODIGY/ANALOGY	used	prior	

similar	problems	to	limit	the	search	for	new	solutions.		The	general	approach	of	using	prior	experiences	

or	examples	to	solve	or	plan	in	new	situations	is	typical	in	case-based	reasoning	systems	(Kolodner,	

2006).	

A	slightly	different	approach	to	analogical	problem	solving	is	to	use	prior	knowledge	to	construct	

new	knowledge	that	is	abstracted	away	from	any	one	scenario.		In	PHINEAS	(Falkenhainer,	1990),	new	

domain	theories	were	constructed	by	analogy	to	previous	observations	of	known	phenomena.		Given	a	

behavior	of	some	phenomenon	from	an	unknown	domain,	PHINEAS	retrieved	an	analogous	behavior	

from	a	known	domain.		By	constructing	an	analogy	between	the	two	behaviors,	the	system	was	able	to	

detect	entity	correspondences,	and	transfer	model	fragments	from	the	known	domain	to	the	unknown	

domain.		As	a	result,	the	analogy	not	only	provided	useful	information	for	the	current	scenario,	but	also	

abstract	information	in	the	form	of	model	fragments	that	could	be	applied	to	new	situations	in	the	

previously	unknown	domain.		A	similar	cross-domain	approach	was	used	by	Klenk’s	domain	transfer	via	

analogy	(DTA)	system	(Klenk	&	Forbus,	2013).		In	DTA,	analogies	were	constructed	between	worked	

solutions	(i.e.	problems	with	the	solution	steps	explicitly	identified)	to	create	a	mapping	between	two	

different	domains,	e.g.	rotational	kinematics	and	translational	kinematics.		Given	a	worked	solution	to	a	

problem	in	one	domain	and	a	library	of	worked	solutions	from	another,	DTA	used	analogical	retrieval	to	

find	an	analogous	worked	solution	from	library.		The	entity	correspondences	between	the	two	worked	

solutions	were	used	to	create	a	mapping	between	the	two	different	domains.		Thus,	equation	schemas	

from	the	one	domain	could	be	projected	to	the	other,	and	vice	versa.		DTA	is	very	similar	to	PHINEAS	in	
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the	sense	that	observations	from	known	and	unknown	domains	are	compared	to	arrive	at	more	general	

between-domain	mappings.					

More	recently,	models	of	analogy	have	been	used	to	aid	in	open-domain	question	answering	

and	traditional	analogy	word	problems.		IBM’s	Watson	used	structure-mapping	between	individual	

questions	and	potentially	useful	text	passages	as	a	measure	of	semantic	similarity	(Murdock,	2011).		

When	structure-mapping	was	used	on	more	abstract	representations	than	the	individual	lexical	items	

within	a	given	question,	Watson’s	ability	to	identify	text	passages	that	provided	evidence	for	particular	

answers	improved	(Murdock,	2011).		Boteanu	and	Chernova	(2015)	developed	an	approach	for	

answering	traditional	analogy	word	problems	(e.g.	A:B::C:D)	that	used	concepts	in	semantic	networks.		

Given	two	concepts	in	the	network,	their	similarity	was	computed	based	on	relational	pathways	

between	them.		The	similarity	of	those	pathways	was	the	proportion	of	common	relations.	These	

relational	pathways	were	also	used	to	generate	explanations	for	any	answers	generated,	which	often	

contained	salient	relational	similarities.		In	a	domain-specific,	but	more	complex	problem	topic,	

Chaudhri	et	al.	(2014)	used	a	large	scale	knowledge	base	to	answer	compare	and	contrast	problems	

between	topics	in	biology.		Analogical	mappings	between	topics	were	used	to	generate	tables	where	

information	in	both	topics	was	aligned,	in	order	to	highlight	important	similarities	and	differences.		In	

each	of	these	systems,	the	notion	of	analogical	reasoning	is	implemented	in	different	ways,	but	the	

purpose	in	each	is	to	either	provide	some	measure	of	similarity	between	two	descriptions	or	to	identify	

meaningful	similarities	and	differences.				

6.2 Knowledge	Capture	

The	most	direct	application	of	analogical	reasoning	to	knowledge	capture	requires	understanding	

explicit	analogies	from	natural	language.		Barbella	and	Forbus’	(2011)	analogical	dialogue	acts	model	
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provides	a	framework	for	translating	utterances	into	directives	for	building	analogical	mappings.		Their	

model	has	been	integrated	into	EANLU	and	was	used	in	the	interpretation	model	in	Chapter	4.	

Analogy	has	also	been	combined	with	crowdsourcing	as	a	means	to	capture	common	sense	

knowledge	(Chklovski,	2003).		Chklovski’s	system,	Learner,	uses	multiple	analogies	over	concepts	that	

have	been	previously	entered	by	human	volunteers	to	pose	questions	about	new	topics	that	are	chosen	

by	the	human	volunteer.		Mappings	between	the	new	topic	and	previously	entered	topics	are	used	to	

identify	properties	that	are	known	about	similar	topics	but	not	known	for	the	current	own.		Rather	than	

transferring	the	value	of	the	property	to	the	new	topic,	the	property	is	formulated	as	a	question,	which	

is	posed	to	the	human	volunteer.		In	terms	of	structure-mapping	theory,	this	is	akin	to	using	

crowdsourcing	to	accept,	reject,	or	clarify	candidate	inferences	between	topics.		Speer	et	al.	(2008)	used	

a	non-structural	approach	to	analogical	reasoning	and	applied	it	to	the	ConceptNet	semantic	network.		

They	use	singular	value	decomposition	to	reduce	knowledge	from	ConceptNet	along	key	feature	

dimensions.		Feature	overlap	can	be	easily	computed	via	dot	product,	but	this	comes	at	the	loss	of	

structured	relational	information.	

In	the	area	of	multimodal	reasoning,	Ferguson’s	JUXTA	system	(Ferguson	&	Forbus,	1998)	was	

an	early	approach	for	interpreting	and	critiquing	diagrams	with	juxtaposed	scenarios.		In	JUXTA,	analogy	

was	used	to	detect	differences	in	the	spatial	representation	of	the	diagram,	and	label	them	based	on	the	

diagram’s	caption.		The	multimodal	knowledge	capture	system	(MMKCAP)	from	Lockwood	and	Forbus	

(2009)	used	structure-mapping	to	align	representations	from	different	modalities.		Lockwood’s	system	

read	simplified	English	versions	of	passages	and	sketched	versions	of	diagrams	from	a	physics	textbook	

on	basic	machines.		Given	that	passages	typically	refer	to	their	accompanying	diagrams	and	vice	versa,	

structure-mapping	was	used	to	align	information	from	the	passages	with	information	from	the	diagram.		
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The	analogical	mapping	indicated	how	corresponding	items	could	co-refer	and	therefore	provided	a	

template	for	how	both	information	sources	could	be	merged	into	an	integrated	case.		Integrated	cases	

for	basic	machines	from	the	first	chapter	were	captured	using	this	approach.		The	resulting	cases	were	

then	used	to	answer	questions	from	that	chapter.		The	multimodal	integrated	approach	in	Chapter	4	

extends	Lockwood’s	work	because	it	uses	automatic	language	disambiguation	and	event	interpretations	

to	add	structural	similarity	between	the	sketch	and	text	interpretations.		

6.3 Tutoring	Systems	

In	comparison	to	analogical	reasoning	in	general,	there	have	been	relatively	few	attempts	at	

incorporating	analogical	reasoning	into	intelligent	educational	software.		For	teaching	conceptual	

knowledge,	the	use	of	analogies	has	been	explored	in	three	systems.	Murray	et	al.	(1990)	designed	a	

tutoring	system	based	on	the	idea	of	bridging	analogies	(Clement,	1993),	which	are	designed	to	

gradually	change	misconceptions	by	comparing	a	misunderstood	scenario	with	a	well-understood,	

intuitive	scenario,	called	an	anchor.	If	the	student	cannot	remedy	the	misconception	by	comparison	to	

the	anchor,	then	a	bridge	scenario	is	summoned	to	facilitate	inference	projection	from	the	anchor	to	the	

bridge	and	eventually	to	the	initially	misunderstood	scenario.	In	this	system,	the	scenarios	which	were	

used	for	instruction	were	determined	empirically.	They	were	organized	in	a	conceptual	network,	such	

that	at	the	end	of	each	comparison,	the	system	used	the	structure	of	the	network	to	determine	which	

analog	should	be	used	next.	Each	comparison	activity	consisted	of	a	forced	choice	question	and	a	

confidence	estimate	from	the	student.	If	the	student	answered	the	question	incorrectly,	an	analogy	

between	the	initial	situation	and	an	intuitive	anchor	was	invoked.	When	the	student	answers	the	

question	correctly,	analogs	are	selected	along	the	graph	going	closer	to	the	original	scenario,	thereby	

gradually	encouraging	the	student	to	project	inferences	from	the	anchor	to	the	originally	misunderstood	

situation.	Thus,	the	main	instructional	strategy	of	this	tutor	is	in	its	selection	of	analogs	as	determined	
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by	the	scenario	network.	There	is	no	fine-grained	feedback	during	the	comparison	process.	By	contrast,	

another	analogy	tutoring	system	used	hierarchical	plan	operators	to	provide	domain-specific,	fine-

grained	feedback	for	analogies	about	the	circulatory	system	(Lulis	et	al.,	2004;	Lulis,	2005).	These	plans	

were	modeled	after	analyses	of	tutoring	dialogues	between	students	and	expert	tutors	(Lulis	&	Evens,	

2003)	and	each	analogy	required	different	entry-level	plans.	This	means	that	although	the	system	was	

able	to	provide	detailed	feedback	in	natural	language,	the	teaching	strategies	were	not	domain	general.		

More	recently,	Alizadeh	et	al.	(2015)	conducted	a	study	that	characterized	computer	science	(i.e.	data	

structures)	tutoring	dialogues	and	Harsley	et	al.	(2016)	used	those	corpus	analyses	to	incorporate	

analogies	into	the	ChiQat	tutoring	system.		This	is	a	promising	area	of	research,	although	all	tutoring	

systems	to	date	that	have	incorporated	analogies	focus	on	one	domain,	usually	for	a	restricted	set	of	

topics,	and	are	not	able	to	handle	novel	analogies.		

Given	the	importance	of	analogies	for	case-based	reasoning,	a	natural	extension	is	to	build	a	

case-based	tutoring	system.	This	is	the	rationale	behind	Sketch	Worksheets	(Yin	et	al.,	2010),	which	is	a	

sketch-based	tutoring	system	that	provides	on-demand	feedback	on	sketches.		Each	sketch	worksheet	

assignment	has	a	pre-defined	solution	associated	with	it,	so	that	a	student	can	get	advice	on	their	sketch	

with	respect	to	that	solution.		Structure-mapping	is	used	to	align	and	compare	the	student’s	sketch	with	

the	pre-defined	solution.		Differences	identified	by	the	analogy	are	used	to	determine	what	feedback	

should	be	given	to	the	student.		Note	that	unlike	explicit	analogy	tutors	(e.g.	CIRCSIIM,	ChiQat),	Sketch	

Worksheets	does	not	use	analogy	as	an	explicit	instructional	tool.		Instead,	it	uses	it	as	a	means	to	

evaluate	a	new	sketch	in	terms	of	a	familiar	one	to	provide	automatic	feedback.	
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6.4 Summary	

Analogical	reasoning	has	been	used	in	a	variety	of	ways	in	AI	systems.		Case-based	reasoning	systems	

primarily	use	analogy	as	a	means	to	transfer	knowledge	from	prior	situations	to	new	contexts	for	

planning	or	problem	solving.		Some	problem	solving	systems,	like	PHINEAS	and	DTA,	have	explored	

analogy	as	a	way	to	transfer	knowledge	between	domains	to	generate	abstract	knowledge	(or	schemas)	

that	can	then	be	applied	to	new	situations	in	the	same	domain.		Knowledge	capture	systems	range	from	

language	systems	that	try	to	interpret	explicit	analogies,	to	feature-based	methods	of	reducing	semantic	

network	size	and	complexity.		Tutoring	systems	have	been	proposed	to	use	analogy	as	a	means	for	

explaining	instructional	content	as	well	as	interpreting	student	input.		In	all	three	areas,	analogy	is	used	

as	a	method	for	aligning	complex	representations,	measuring	overall	similarity,	and	transferring	

knowledge	from	one	topic	to	another.			

Currently	no	systems	use	multimodal	instructional	analogies	for	knowledge	capture	or	problem	

solving.		Only	Lockwood’s	MMKCAP	and	Klenk’s	DTA	used	a	combination	of	analogical	reasoning	and	

spatial	reasoning.		DTA	explored	cross-domain	analogies	to	generate	equation	schemas,	so	it	did	not	

deal	with	the	type	of	instructional	analogies	that	are	used	to	teach	novices	about	basic	science	concepts.		

The	focus	of	MMKCAP	was	also	not	on	instructional	analogies,	but	rather	on	how	to	align	

representations	from	different	modalities.		Most	of	the	question	answering	systems	used	analogy	as	a	

way	of	assessing	within-domain	similarity	(e.g.	as	in	Watson)	or	identifying	and	organizing	similarities	

and	differences	(e.g.	as	in	Inquire,	Chaudhri	et	al.	(2014)).		Using	analogical	reasoning	with	common	

sense	domains	to	answer	questions	in	a	technical	domain	has	not	yet	been	explored.			

Building	a	system	that	can	interpret	multimodal	instructional	analogies	is	novel	and	useful.		

Novelty	is	demonstrated	by	the	lack	of	AI	systems	with	the	ability	to	build	knowledge	from	the	types	of	
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analogies	that	are	used	to	teach	beginning	science	topics.		In	terms	of	the	content	expressed	in	

analogies,	the	model	that	is	most	closely	related	to	this	thesis	is	Barbella	and	Forbus’	(2011)	model	of	

analogical	dialogue	acts.		This	thesis	extends	that	work	by	using	multimodal	instructional	analogies	

(rather	than	just	text	passages)	to	build	qualitative	knowledge	about	several	topics.		This	thesis	also	

builds	upon	the	MMKCAP	system	(Lockwood	&	Forbus,	2009)	by	using	analogy	to	combine	language	and	

visual	information,	but	unlike	MMKCAP,	circumvents	the	need	for	manual	language	disambiguation.		

The	resulting	model	of	multimodal	analogy	interpretation	opens	the	door	to	new	kinds	of	knowledge	

capture	–	via	reading	or	via	communication	with	a	human	collaborator	–	and	to	new	kinds	of	intelligent	

tutoring	systems	that	use	multimodal	instructional	analogies	to	teach	basic	science	knowledge.	

Chapter	7: Conclusion	

The	analyses	in	this	thesis	address	the	following	questions	about	instructional	analogies	for	teaching	

middle	school	science:	

What	are	these	analogies	about	and	how	are	they	used?		

What	are	the	reasoning	requirements	for	interpreting	them?			

Do	they	provide	knowledge	that	is	useful	to	an	intelligent	system?			

The	analysis	in	Chapter	3	illustrates	that	analogies	can	be	used	for	a	wide	range	of	topics	in	

introductory	science,	including	topics	in	biology,	chemistry,	earth/space	science,	and	physics.		These	

analogies	appeal	to	commonsense	notions	of	change,	behavior,	possession	(including	part-whole	

relationships),	and	relative	size.		Most	of	the	analogies	in	the	FAR	guide	focus	on	functions	and	

behaviors	of	things	and	their	parts.		Other	analogies	convey	information	about	relative	size	or	

magnitude,	which	is	helpful	for	communicating	ideas	about	very	large	or	very	small	scales.		The	
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overwhelming	majority	of	analogies	use	spatial	representations	or	visual	input	of	some	kind.		The	

analogies	use	base	domains	that	most	people	are	familiar	with,	like	human	activities	in	a	city	and	

unlocking	locks.		Interestingly,	some	analogies	create	ad	hoc	base	domains,	often	in	the	form	of	physical	

demonstrations,	to	convey	a	new	topic.		For	example,	walking	up	an	escalator	that	is	moving	downward	

is	a	very	specific	source	of	knowledge	for	learning	homeostasis.		So	is	a	web	of	students	connected	by	

string	to	teach	about	ecosystems.		Students	are	much	less	likely	to	have	real	experiences	with	ad	hoc	

base	domains,	but	they	can	still	be	useful	because	they	ultimately	rely	on	students’	understanding	of	the	

world.		Spatial	representations	such	as	diagrams	and	pictures	or	general	visual	input	from	physical	

demonstrations	or	role-playing	activities	are	also	used	as	tools	to	recruit	that	background	knowledge.		In	

short,	instructional	analogies	are	used	for	a	variety	of	topics	and	they	almost	always	involve	some	kind	

of	visual	stimulation.		They	differ	in	what	similarities	matter	(i.e.	function	and/or	structure),	and	in	how	

much	background	knowledge	is	needed.			

Interpreting	instructional	analogies	requires	natural	language	understanding,	significant	

background	knowledge	about	the	physical	world,	and	spatial	reasoning.		The	goal	of	the	experiments	in	

Chapter	4	was	to	build	a	model	of	interpretation	that	was	able	to	capture	qualitative	science	knowledge	

about	new	domains.		The	model	consisted	of	natural	language	understanding	(of	simplified	English),	

sketch	understanding	(albeit	with	conceptual	labels),	and	structure-mapping	that	was	used	to	create	

multimodal	representations	and	to	transfer	knowledge	from	the	base	domain	to	the	target	domain.		

Background	knowledge	and	explicit	base	domain	knowledge	made	contributions	to	the	overall	

performance	of	the	model,	but	the	presence	of	sketched	input	had	the	greatest	impact.		This	is	due	to	

the	sketch	representation’s	critical	role	in	natural	language	disambiguation.		However,	spatial	

information	also	plays	a	role	in	overall	alignment,	especially	when	there	are	many	containment	spatial	

relations	and/or	many	arrows	to	trigger	visual	conceptual	reasoning.			
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Lastly,	the	system	presented	in	Chapter	5	demonstrated	that	the	qualitative	science	knowledge	

captured	in	Chapter	4	was	useful	for	answering	questions	from	middle	school	science	exams.		Consistent	

with	previous	analyses	of	middle	school	science	exams	(Clark	et	al.,	2013)	many	questions	required	type-

level	knowledge	(i.e.	object	type	properties)	and	the	ability	to	project	background	knowledge	into	

example	scenarios.		Of	the	14	questions	that	were	examined,	only	one	involved	quantitative	values	

(Table	14,	question	12).		Even	still,	this	question	did	not	require	quantitative	calculations	or	a	numerical	

simulation.		It	simply	required	a	type	level	equality	relationship	(although	this	was	one	problem	the	QA	

system	did	not	solve).		All	the	other	questions	required	knowledge	of	the	general	parts	and	functions	of	

classes	of	objects	or	the	ability	to	import	qualitative	causal	information	into	an	example	situation.		

7.1 Claims	Revisited	

Claim	1:	Structure-mapping	can	be	used	to	build	qualitative	knowledge	from	multimodal	instructional	

analogies.	

1) Multimodal	instructional	analogies	use	visual	representations	to	facilitate	interpretation.	

2) Instructional	analogies	use	background	knowledge	to	facilitate	interpretation.	

3) Multimodal	integration	and	analogy	interpretation	can	be	achieved	using	structure-mapping.	

Claim	1	was	supported	by	the	experiments	in	Chapter	4,	which	showed	that	structure	mapping	could	be	

used	both	as	a	way	to	integrate	multimodal	information	and	as	a	way	to	build	cross-domain	analogies	

such	that	the	interpretation	resulted	in	the	intended	target	knowledge.		Ablation	experiments	illustrated	

that	the	use	of	background	knowledge,	explicit	base-domain	knowledge,	and	especially	visual-

conceptual	knowledge	from	the	sketch	were	all	substantial	contributors	to	the	model’s	performance.			

	 It	is	important	to	note,	however,	that	the	evidence	gathered	in	Chapter	4	cannot	be	taken	as	a	

strong	reflection	of	the	relative	importance	of	background	knowledge	and	spatial	reasoning	in	people.		
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As	mentioned	in	Chapter	4,	the	interpretation	model	does	not	completely	account	for	why	background	

and	explicit	base	domain	knowledge	is	so	important	for	people.		The	value	of	commonsense	domains	is	

that	they	are	richly	connected	to	other	experiences	and	conceptual	knowledge.		The	base	knowledge	

that	the	interpretation	model	uses	is	connected	to	ontologies	in	Cyc	and	explicit	base	domain	

knowledge	from	the	analogy,	but	these	connections	are	nothing	compared	to	the	interconnectedness	of	

human	knowledge.		Without	comparable	interconnectedness	and	flexibility	of	background	knowledge,	I	

do	not	expect	that	the	importance	of	base	domain	transfer	can	be	captured	accurately	by	this	

interpretation	model.		Modeling	background	and	commonsense	knowledge	is	an	entire	research	area	in	

itself,	so	it	is	not	surprising	that	shortcomings	in	that	area	negatively	impact	the	model’s	fidelity	to	

human	reasoning.			

Claim	2:	Qualitative	knowledge	captured	via	multimodal	instructional	analogies	can	be	used	to	answer	

questions.	

The	QA	system	described	in	Chapter	5	was	developed	to	test	this	claim.		Not	surprisingly,	the	breadth	of	

topics	in	the	biology	and	electrical	energy	questions	in	the	exams	was	not	fully	covered	by	the	

instructional	analogies	from	Chapter	4.		However,	for	the	set	of	14	exam	questions	where	the	answers	

overlapped	at	least	partially	with	the	intended	target	knowledge	of	the	analogies,	the	QA	system	was	

able	to	correctly	answer	11	questions.		During	question	answering,	the	system	had	access	to	the	

knowledge	learned	from	analogies	and	all	of	the	human	physiology	and	universal	vocabulary	

information	in	the	Cyc	KB.		The	qualitative	science	knowledge	learned	from	the	analogies	played	a	

critical	role	in	question	answering,	since		the	system	could	not	answer	any	of	the	questions	when	it	did	

not	use	knowledge	captured	from	the	instructional	analogies	in	Chapter	4.		This	illustrates	the	

importance	of	type-level,	qualitative	knowledge	in	answering	these	questions.		Since	many	of	the	
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questions	involved	example	situations,	this	result	also	illustrates	that	the	type-level	knowledge	can	be	

deployed	into	instance-level	descriptions,	indicating	its	utility	for	reasoning	about	novel	situations.					 			

7.2 Open	Questions	and	Future	Work	

One	of	the	biggest	challenges	to	interpreting	multimodal	instructional	analogies	and	question	answering	

is	natural	language	understanding.		Some	of	the	challenges	encountered	in	the	construction	of	this	

interpretation	model	include:	disambiguation,	reference	resolution,	and	generics.		For	disambiguation,	

conceptually	labeled	sketches	were	a	crucial.		One	can	argue	that	this	simply	side-steps	the	

disambiguation	issue	by	being	heavily	influenced	by	a	manually	disambiguated	sketch.		Better	

disambiguation	heuristics	are	needed	to	reduce	the	model’s	dependence	on	the	conceptual	labels	form	

the	sketch.		Additionally,	instructional	analogies	can	be	presented	without	spatial	representations,	so	

language-only	disambiguation	is	still	an	unfulfilled	requirement.		Experiments	with	narrative	functions	

(McFate	et	al.,	2014)	and	analogical	word	sense	disambiguation	(Barbella	&	Forbus,	2013)	could	help	

improve	this	process.		As	noted	in	the	analysis	of	the	FAR	guide	analogies,	choosing	the	right	level	of	

abstraction	for	representing	functions	and	behaviors	is	critical.		Alternatively,	it	could	be	better	to	avoid	

irreversible	semantic	interpretation	choices	altogether.		An	informative	experiment	would	be	to	attempt	

to	construct	a	cross-domain	analogy	without	making	semantic	interpretation	choices,	and	using	

commonalities	to	provide	evidence	for	particular	semantic	interpretations.		If	goal	inference	or	

correspondence	information	were	available	(e.g.	from	analogical	dialogue	acts),	those	could	guide	the	

interpretation	choices	even	further.		For	reference	resolution,	challenges	arose	when	the	same	object	

was	referred	to	differently.		Creating	deterministic	rules	to	handle	these	cases	is	difficult.		In	some	cases,	

they	should	corefer,	e.g.	rechargeable	battery	and	charged	battery.		In	other	cases,	they	should	be	

distinct,	e.g.	rechargeable	battery	and	drained	battery.		The	importance	of	the	distinction	depends	

highly	on	context.		In	the	case	of	the	ATP/battery	analogy,	the	difference	between	a	rechargeable	
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battery	and	a	charged	one	can	be	ignored,	while	the	difference	between	a	rechargeable	battery	and	a	

drained	one	cannot.		Another	issue	is	the	problem	of	generics.		The	interpretation	model	for	this	thesis	

takes	an	aggressive	approach	to	generics,	assuming	that	most	relations	mentioned	in	an	analogy	can	be	

generalized	somehow,	over	the	collections	of	primary	actors	in	an	event,	over	the	collections	of	wholes	

in	part-whole	relationships,	or	over	the	causes	in	qualitative	causal	influences.		This	happens	to	work	

well	in	the	context	of	instructional	analogies	for	recall,	but	less	so	for	precision.		As	would	be	expected	

of	a	novel	cross-domain	analogy,	the	system	overproduces	and	is	very	liberal	when	it	comes	to	accepting	

inferences.		This	is	useful	for	initializing	a	target	domain	if	knowledge	refinement	is	postponed.		Having	

overly	general	(or	underspecified)	type-level	statements	is	very	useful	because	it	means	that	the	

knowledge	is	applicable	in	a	wide	range	of	situations.		However,	it	also	increases	the	likelihood	of	

creating	false	knowledge.		Maintaining	a	balance	between	overly	general	and	overly	specific	statements	

is	an	open	problem.		A	better	understanding	of	how	to	interpret	generics	more	precisely	in	the	context	

of	instructional	analogies	would	greatly	improve	interpretation.		This	model	also	needs	to	be	evaluated	

on	a	larger	set	of	analogies,	both	in	new	domains	to	broaden	coverage,	but	also	on	existing	topics	to	

explore	how	multiple	analogies	would	help	refine	overproduced	knowledge.		

	 Another	potential	area	for	future	work	is	interactivity	for	incremental	natural	language	

understanding	and	incremental	analogical	matching.		The	interpretation	model	built	for	this	thesis	is	

fairly	linear.		An	alternative	approach	would	be	to	have	a	human	collaborator	in	the	loop	for	at	least	

some	parts	of	knowledge	capture.		In	some	cases	of	language	interpretation,	there	are	competing	

choices	that	are	equally	valid,	but	one	less	favorable	due	to	the	context	of	the	analogy.		If	the	

interpretation	model	had	the	ability	to	pose	questions	to	a	human	collaborator,	it	could	engage	in	active	

learning	and	possibly	generate	models	for	what	levels	of	abstraction	are	favorable	for	instructional	

analogies.		A	similar	approach	could	be	used	for	multimodal	integration,	but	from	early	experiments,	it	is	
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not	clear	that	it	would	be	beneficial.		Early	on,	I	experimented	with	an	incremental	version	of	

multimodal	integration,	where	instead	of	fully	interpreting	the	text	and	merging	it	with	the	sketch,	I	

began	with	the	sketch	information	and	incrementally	added	knowledge	from	each	sentence,	merging	

entities	for	each	addition.		For	simple	situations,	this	addressed	issues	in	coreference	as	well:	if	there	

was	one	nucleus	in	the	sketch,	and	“the	nucleus”	was	mentioned	in	three	different	sentences,	each	time	

a	sentence	was	added,	the	nuclei	would	merge	and	the	final	representation	would	have	one	nucleus.		

This	ignored	the	nuance	of	reference	resolution,	however,	as	it	also	would	merge	events	that	had	

different	actors.		For	example,	consider	these	two	sentences	from	the	cell/city	analogy:			

The	power	station	provides	electricity.	The	mitochondrion	provides	chemical	energy.	

Interpreting	the	first	sentence	would	result	in	an	instance	of	MakingSomethingAvailable,	where	the	

power	station	is	making	electricity	available.		The	second	sentence	would	result	in	another	instance	of	

MakingSomethingAvailable	where	the	mitochondrion	makes	chemical	energy	available.		A	simple	

incremental	merging	approach	would	result	in	these	two	event	instances	being	merged,	even	though	

they	involve	different	actors.		On	the	other	hand,	this	incremental	approach	may	be	useful	for	cross-

domain	analogies,	so	that	inferences	could	be	evaluated	incrementally.		The	model	currently	uses	

incremental	matching	to	incorporate	inferences	and	extend	cross-domain	matches.		Having	a	human,	or	

some	self-evaluation	step,	in	the	loop	for	this	process	could	greatly	improve	the	matching	because	it	

would	prevent	incorrect	inferences	from	extending	the	match	in	an	unintended	way.		Consequently,	

overproduction	would	be	reduced,	improving	the	overall	quality	of	the	final	target	representations.	

Exploring	techniques	like	these,	or	others	that	make	the	interpretation	model	more	incremental	could	

be	beneficial	to	the	model’s	transparency	and	flexibility.				
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	 More	investigations	are	also	needed	to	assess	the	generality	of	this	approach	and	of	the	

characterization	of	instructional	analogies	in	Chapter	3.		Analogies	are	used	in	many	other	domains	

beyond	the	ones	explored	here.		For	example,	the	analogies	analyzed	by	Richland	et	al.	(2007)	involved	

procedural	knowledge	for	solving	mathematics	problems.		Using	the	categories	identified	by	Alfieri	et	al.	

(2013),	the	11	analogies	explored	here	all	involved	conceptual	knowledge	(rather	than	strictly	

procedural	or	perceptual	knowledge).		How	well	the	interpretations	strategies	identified	here	work	with	

other	types	of	analogies,	i.e.	procedural	and	perceptual,	is	still	an	open	question.		Larger	corpus	analyses	

could	reveal	how	far	the	visual	conceptual	relations	described	in	4.2.2.1	cover	spatial	representations	

used	in	instructional	analogies.		Similarly,	such	corpus	analyses	could	be	used	to	expand	the	set	of	very	

abstract	terms	(e.g.	Event,	PartiallyTangible,	Individual)	and	determine	if	it	is	even	possible	to	arrive	at	a	

set	of	abstract	terms	that	can	be	used	for	a	very	wide	range	of	analogy	topics.		

	 This	work	leads	to	an	exciting	intersection	of	analogical	reasoning,	spatial	reasoning,	and	

intelligent	tutoring.		One	of	the	ways	in	which	multimodal	reasoning	could	be	useful	is	for	multimodal	

instruction.		Intelligent	systems	that	have	the	ability	to	understand	visual	representations	paired	with	

text	are	needed	to	capture	knowledge	from	reading	and	from	interacting	with	other	people.		Such	

systems	would	be	endowed	with	the	types	of	qualitative	knowledge	that	would	improve	their	ability	to	

understand	the	world	and	to	communicate	with	people.	One	of	the	ways	in	which	instructional	

analogies	are	powerful	is	through	Socratic	tutoring	dialogues	(for	examples	of	analogies	used	this	way,	

see	(Alizadeh	et	al.,	2015;	Lulis	&	Evens,	2003)).		As	mentioned	in	related	work,	a	few	researchers	have	

worked	on	tutoring	systems	that	use	analogies	as	an	explicit	instructional	tool.		But,	those	systems	are	

mostly	scripted	from	corpus	analyses	of	human	tutoring	dialogues.		This	is	an	important	first	step,	but	

these	systems	cannot	interpret	novel	analogies	or	propose	new	ones.		An	intelligent	system	that	could	

engage	in	rich	dialogues	with	a	student	and	support	novel	analogies	in	multiple	domains	would	be	a	
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huge	advance	in	the	state	of	the	art	in	intelligent	tutoring	systems.		This	cannot	be	achieved	without	

improvements	to	general	purpose	natural	language	understanding	and	without	general	purpose	

cognitive	models	of	analogical	reasoning	like	structure-mapping.				
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APPENDIX	A:	Instructional	Analogies	

	

ATP	/	battery	

Text:	
ATP	is	like	a	charged	battery.		The	charged	battery	has	electrical	energy.		The	charged	battery	releases	
electrical	energy	to	electronic	devices.		The	charged	battery	changes	into	a	drained	battery	when	
electrical	energy	is	used.		The	charged	battery	can	be	used	over	and	over	again.		A	battery	charger	
changes	the	flat	battery	into	the	charged	battery.		The	ATP	has	chemical	energy.		The	ATP	releases	
chemical	energy	to	cell	parts.		The	ATP	changes	into	ADP	when	chemical	energy	is	used.		The	ATP	can	be	
used	over	and	over	again.		Mitochondria	changes	ADP	into	ATP.		The	ADP	is	like	the	drained	battery.		
The	charged	battery	provides	energy	gradually,	but	the	ATP	provides	energy	immediately.		A	phosphate	
breaks	off	from	the	ATP,	but	nothing	breaks	off	from	the	battery.	Devices	usually	use	two	batteries,	but	
cells	use	many	ATP	molecules.		

	
	
Sketch	objects:	
(isa using-atp IntrinsicStateChangeEvent) 
(isa ADP AdenosineDiphosphate) 
(isa charging-the-battery ChargingABattery) 
(isa ATP AdenosineTriphosphate) 
(isa atp-energy EnergyStuff) 
(isa battery-charger BatteryCharger) 
(isa making-atp IntrinsicStateChangeEvent) 
(isa phosphate Phosphate) 
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(isa battery-energy EnergyStuff) 
(isa charged-battery ChargedBattery) 
(isa drained-battery FlatBattery) 
(isa Object-17 BreakingEvent) 
(isa using-battery IntrinsicStateChangeEvent)) 
Gold	Standard	Queries	in	English,	CycL:	
Four	rightmost	columns	show	which	queries	succeeded	in	the	four	experimental	conditions	in	Chapter	4.	

Successfully	captured	by	Model?	
Query	in	
English	

Query	in	CycL	 Full	
Model	

No	
Back-
ground	

No	
Base	

No	
Sketch	

ATP	is	energy	
sufficient.	

(relationAllExists possessiveRelation 
AdenosineTriphosphate EnergyStuff) 
 

P P P 
NO 

ATP	releases	
energy	to	
parts/places	
in	the	cell.							

(relationExistsAll performedBy  
(SubcollectionOfWithRelationToTypeFn 
(SubcollectionOfWithRelationToTypeFn   
       MakingSomethingAvailable target  
       CellPart)  
      transferredObject  
      EnergyStuff)  
  AdenosineTriphosphate) 
       

P P P 
NO 

ADP	converts	
to	ATP.		

(relationAllExists toState                    
(IntrinsicStateChangeOfFn 
AdenosineDiphosphate)                       
AdenosineTriphosphate) 
        

P P 
NO NO 

ATP	converts	
to	ADP.	

(relationAllExists toState  
(IntrinsicStateChangeOfFn 
AdenosineTriphosphate)                   
AdenosineDiphosphate) 
 

P P 
NO NO 

ATP	can	be	
used	over	and	
over	again.								

(relationAll repeatedEvent 
(UsingInstanceFn 
AdenosineTriphosphate)) 
        

P P 
NO NO 

Mitochondria	
are	the	sites	
where	ADP	
gets	changed	
to	ATP.								

(relationExistsAll doneBy 
(IntrinsicStateChangeOfFn 
AdenosineDiphosphate) Mitochondrion) 
        

P P 
NO NO 

Battery's	
energy	is	
released	
gradually,	but	
ATP	energy	is	
released	

(relationAllInstance 
conceptuallyRelated 
(SubcollectionOfWithRelationToTypeFn     
(SubcollectionOfWithRelationToTypeFn 
MakingSomethingAvailable                                                                  
objectActedOn EnergyStuff) performedBy 
AdenosineTriphosphate) Immediately) 

P P P 
NO 
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immediately.								        
A	phosphate	
breaks	away	
from	ATP.	
								

(relationAllExists  
 from-UnderspecifiedLocation  
 (SubcollectionOfWithRelationToTypeFn  
  BreakingEvent                      
  objectOfStateChange Phosphate)                     
AdenosineTriphosphate) 
        

P P P P 

Many	ATP	
molecules	are	
used.								

(relationAllInstance qualitativeExtent       
(SubcollectionOfWithRelationFromTypeFn 
(SubcollectionOfWithRelationFromTypeFn  
   Molecule compoundNoun  
   AdenosineTriphosphate) 
   instrument-Generic  
 (UsingInstanceFn             
(SubcollectionOfWithRelationFromTypeFn   
   Molecule compoundNoun  
   AdenosineTriphosphate))) 
 Many-Quant) 
        

NO	 NO NO NO 

Energy	is	
required	to	
change	ADP	
into	ATP.								

(relationAllExists  
 requires-Underspecified  
 (IntrinsicStateChangeOfFn    
    AdenosineDiphosphate) 
    EnergyStuff) 
        

NO	 NO NO NO 

Energy	is	
released	
when	ATP	
changed	into	
ADP.	
	

(relationAllExists  
  releases-Underspecified  
  (IntrinsicStateChangeOfFn  
    AdenosineTriphosphate) 
    EnergyStuff))) 

P 
NO NO P 
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Cell/city	

Text:	
A	cell	is	like	a	city.	The	nucleus	is	like	the	city	government.	The	city	government	controls	the	city.	The	
nucleus	controls	the	cell.	The	mitochondrion	is	like	the	power	station.		The	power	station	provides	
electricity.	The	mitochondrion	provides	chemical	energy.	Construction	companies	build	houses.	The	
ribosomes	make	proteins.	Things	in	the	city	move	along	the	road.	The	endoplasmic	reticulum	is	like	the	
road.	Golgi	bodies	export	substances	outside	of	the	cell.	Factories	export	things	outside	of	the	city.	The	
city	government	changes	direction	after	elections	and	is	very	adaptable.	Unlike	the	city,	the	nucleus	
always	controls	the	cell.	

 
Sketch	objects:	
(isa mitochondrion1 Mitochondrion) 
(isa endoplasmic-reticulum EndoplasmicReticulum) 
(isa membrane CellMembrane) 
(isa ribosome3 Ribosome)  
(isa construction-companies ConstructionCompany) 
 (isa city-limits Border)  
(isa golgi-bodies GolgiApparatus) 
 (isa roads Roadway) 
 (isa roads TransportationPathSystem)  
(isa house-1 House-Modern)  
(isa factory FactoryBuilding) 
 (isa the-cell Cell) 
 (isa house-3 House-Modern)  
(isa windmills WindPowerPlant)  
(isa library SchoolBuilding) 
 (isa the-city City) 
 (isa nucleus CellNucleus) 
 (isa city-hall CityGovernment)  
(isa ribosome1 Ribosome) 
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 (isa mitochondrion2 Mitochondrion)  
(isa ribosome2 Ribosome)) 
 
 
Gold	Standard	Queries	in	English,	CycL:	

Four	rightmost	columns	show	which	queries	succeeded	in	the	four	experimental	conditions	in	Chapter	4.	
Successfully	captured	by	Model?	

Query	in	English	 Query	in	CycL	 Full	
Model	

No	
Back-
ground	

No	
Base	

No	
Sketch	

Cells	have	cell	
membranes.	

(partTypes Cell CellMembrane) 
 P P P 

NO 

Cells	have	cell	
nuclei.	

(partTypes Cell CellNucleus) 
 P P P 

NO 

Cells	have	
ribosomes.	

(partTypes Cell Ribosome) 
 P 

NO NO NO 

Cells	have	
endoplasmic	
reticulum.	

(partTypes Cell 
EndoplasmicReticulum) 
        

P P P 
NO 

Cells	have	
mitochondria.	

(partTypes Cell Mitochondrion) 
 P P P 

NO 

Cell	nuclei	
control	cells.	

(relationExistsAll  
 performedBy          
(SubcollectionOfWithRelationToTypeFn   
   ControllingSomething                                               
    objectControlled Cell) 
 CellNucleus) 
       

P P P P 

Mitochondria	
provide	energy.	

(relationExistsAll performedBy  
(MakingAbstractAvailableFn 
EnergyStuff) Mitochondrion) 
 

P P 
NO NO 

Ribosomes	
construct	
proteins.	

(relationExistsAll performedBy 
(MakingFn ProteinStuff) (SetOfTypeFn 
Ribosome)) 
 

P P 
NO NO 

The	endoplasmic	
reticulum	
transports	
things.	

(relationExistsAll doneBy Movement-
TranslationEvent 
EndoplasmicReticulum) 
 

NO	 NO NO NO 

Cell	functions	
are	
interdependent.	

(relationAllExists  
  requires-Underspecified                        
  (TypicalBehaviorOfTypeFn Cell)  
  (PartTypeFn Cell Individual)) 
 

NO	 NO NO P 

Cells	
communicate	

(relationAllExists communicatesWith 
Cell Cell) P 

NO NO P 
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with	other	cells.	  
Individual	cell	
parts	make	up	a	
functional	
system.	

(relationExistsAll members 
FunctionalSystem (PartTypeFn Cell 
Individual)))) 

P 
NO NO P 
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Cell/Earth	

Text:	
A	cell	is	like	planet	Earth.		A	cell	nucleus	is	like	a	continent.		A	chromosome	is	like	a	country.		A	gene	is	
like	a	city.		A	codon	is	like	a	street	address.	

	
Sketch	objects:	
(isa codon Codon-MolecularSegment)  
(isa street-address StreetAddress) 
(isa gene Gene-HereditaryUnit) 
(isa continent Continent) 
(isa cell Cell) 
(isa city City) 
(isa chromosome Chromosome) 
(isa nucleus CellNucleus) 
(isa country Country) 
(isa PlanetEarth Planet) 
	
	

	

Gold	Standard	Queries	in	English,	CycL:	

Four	rightmost	columns	show	which	queries	succeeded	in	the	four	experimental	conditions	in	Chapter	4.	
Successfully	captured	by	Model?	

Query	in	
English	

Query	in	CycL	 Full	
Model	

No	
Back-
ground	

No	
Base	

No	
Sketch	

Cells	are	bigger	
than	cell	nuclei.	

(relationAllExists biggerThan Cell 
CellNucleus) 
 

P P 
NO NO 

Cell	nuclei	are	
bigger	than	

(relationAllExists biggerThan 
CellNucleus Chromosome) P P 

NO NO 
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chromosomes.	
Chromosomes	
are	bigger	than	
genes.	

(relationAllExists biggerThan 
Chromosome Gene-HereditaryUnit) P P 

NO NO 

Genes	are	
bigger	than	
codons.	

(relationAllExists biggerThan Gene-
HereditaryUnit Codon-
MolecularSegment) 

P P P 
NO 

Cells	have	cell	
nuclei.	

(relationAllExists physicalParts Cell 
CellNucleus) 
 

P P P 
NO 

Cell	nuclei	have	
chromosomes.	

(relationAllExists physicalParts 
CellNucleus Chromosome) 
 

P P P 
NO 

Chromosomes	
have	genes.	

(relationAllExists physicalParts 
Chromosome Gene-HereditaryUnit) 
 

P P P 
NO 

Genes	have	
codons.	

(relationAllExists physicalParts 
Gene-HereditaryUnit Codon-
MolecularSegment) 
 

P P 
NO NO 

Cell	nuclei	have	
many	
chromosomes.	

(relationAllExistsRange physicalParts 
CellNucleus Chromosome Many-Quant) P 

NO	 NO NO 

Chromosomes	
have	many	
genes.	

(relationAllExistsRange physicalParts 
Chromosome Gene-HereditaryUnit Many-
Quant) 
 

P 
NO	 NO NO 

Genes	have	
many	codons.	

(relationAllExistsRange physicalParts 
Gene-HereditaryUnit Codon-
MolecularSegment Many-Quant) 
 

P 
NO	 NO NO 
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Circuit/Aquarium	

Text:	
A	simple	series	circuit	is	like	an	aquarium.	The	electric	current	is	like	the	water.	The	wire	is	like	the	pipe.		
The	wire	carries	the	electricity.		The	pipe	carries	the	water.	The	battery	uses	voltage	to	push	electrons.	
The	pump	uses	pressure	to	push	the	water.	Voltage	is	like	pressure.		Thin	wire	in	the	light	bulb	resists	
electric	current.	The	filter	resists	water	flow.		Electric	current	is	conserved.	No	water	is	lost.	Water	is	a	
material	liquid.	Electricity	is	a	flow	of	charge	in	an	electric	field.	Water	can	flow	in	an	incomplete	cycle.	
Electricity	always	needs	a	complete	circuit.	Water	flow	depends	on	the	pressure	of	the	pump.	Electric	
current	depends	on	the	entire	circuit.		

	
Sketch	objects:	
((isa water-pipe Pipe-GenericConduit) (isa water-pump Pump-Generic) (isa the-filter 
Filter) 
 (isa Object-302 Aquarium-Container) (isa circuit-wire-2 Wire) (isa the-battery 
Battery) 
 (isa the-light-bulb LightBulbIncandescent) (isa pump-pressure Pressure) 
 (isa water-arrow DirectionOfMovement) (isa aquarium-water Water) (isa aquarium-water 
Liquid-StateOfMatter) 
 (isa aquarium-container Container) (isa aquarium-container Physob) (isa sandy-bits 
SandySoilRegion) 
 (isa circuit-wire-1 Wire) (isa Object-305 SeriesCircuit) (isa fishface Goldfish)) 
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Gold	Standard	Queries	in	English,	CycL:	
Four	rightmost	columns	show	which	queries	succeeded	in	the	four	experimental	conditions	in	Chapter	4.	

Successfully	captured	by	Model?	
Query	in	
English	

Query	in	CycL	 Full	
Model	

No	
Back-
ground	

No	
Base	

No	
Sketch	

Batteries	
push	
electrons	
(voltage).	

(relationExistsAll 
providerOfMotiveForce  
(SubcollectionOfWithRelationToTypeFn 
PushingAnObject objectActedOn                                                         
Electron) Battery) 
        

P P P 
NO 

Flow	of	
electricity	
depends	on	a	
complete	
circuit.	

(dependsOn-Underspecified Electricity 
(CollectionIntersectionFn                     
(TheSet ElectricalCircuit                  
(ThingDescribableAsFn Entire-TheWord                                                                      
Adjective-Gradable)))) 
        

NO	 NO  NO 

Wires	resist	
the	flow	of	
electricity.	

(relationExistsAll doneBy                    
(SubcollectionOfWithRelationToFn 
PreventingSomething objectActedOn 
Electricity)  
Wire) 
        

NO	 NO  NO 

Circuits	have	
wires.	

(partTypes SeriesCircuit (SetOfTypeFn 
Wire)) 
 

P P P 
NO 

Circuits	have	
batteries.	

(partTypes SeriesCircuit Battery) 
        P P P 

NO 

Circuits	have	
light	bulbs.	

(partTypes SeriesCircuit 
LightBulbIncandescent) 
        

P P 
 NO 
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DNA/pins	

Text:	
DNA	is	like	a	clothespin	structure.	Cytosine	is	like	a	green	clothespin.	Guanine	is	like	an	orange	
clothespin.	Thymine	is	like	a	red	clothespin.	Adenine	is	like	a	blue	clothespin.	The	sugar	phosphate	
backbone	is	like	the	tube.	Weak	hydrogen	bonds	are	like	the	clothespin	attachments.	Any	of	the	colored	
clothespins	will	clip	together.	Cytosine	will	bond	only	with	guanine.	Thymine	will	bond	only	with	
adenine.		The	clothespin	structure	is	short,	but	DNA	molecules	are	typically	very	long.		DNA	molecules	
typically	have	thousands	of	base	pairs.	

	
	
Sketch	objects:	
((isa red-3 ClothesPin)  
(isa red-3 ColoredThing) (isa C-2 Cytosine-Base) 
 (isa the-tubing Pipe-GenericConduit)  
(isa C-3 Cytosine-Base) (isa G-3 Guanine-Base) 
 (isa dna-backbone SugarPhosphateBackbone) 
 (isa T-1 Thymine-Base) (isa T-1 ChemicalObject) 
 (isa blue-2 ClothesPin) (isa blue-2 ColoredThing) 
 (isa orange-1 ClothesPin) (isa orange-1 ColoredThing) 
 (isa green-1 ClothesPin) (isa green-1 ColoredThing) 
 (isa orange-3 ClothesPin) (isa G-1 Guanine-Base) 
 (isa Object-155 HydrogenBond) (isa Object-121 Attachment)  
(isa Object-149 HydrogenBond) 
 (isa red-2 ClothesPin) (isa red-2 ColoredThing) 
 (isa T-3 Thymine-Base) (isa Object-109 Attachment) 
 (isa T-2 Thymine-Base) (isa Object-107 Attachment) 
 (isa Object-145 HydrogenBond) 
 (isa Object-153 HydrogenBond) (isa A-1 ChemicalObject)  
(isa A-1 Adenine-Base) (isa green-3 ClothesPin) 
 (isa blue-1 ClothesPin) (isa blue-1 ColoredThing)  
(isa green-2 ClothesPin) (isa green-2 ColoredThing) 
 (isa blue-3 ClothesPin) (isa blue-3 ColoredThing) 
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 (isa A-2 Adenine-Base) (isa Object-111 Attachment) 
 (isa Object-113 Attachment) (isa Object-105 Attachment) 
 (isa C-1 Cytosine-Base) (isa red-1 ColoredThing) 
 (isa red-1 ClothesPin) (isa Object-147 HydrogenBond) 
 (isa orange-2 ClothesPin) (isa orange-2 ColoredThing) 
 (isa Object-151 HydrogenBond) (isa the-dna-molecule DNAMolecule) 
 (isa the-dna-molecule SpatialThing-NonSituational) (isa Long Distance)) 
	
Gold	Standard	Queries	in	English,	CycL:	

Four	rightmost	columns	show	which	queries	succeeded	in	the	four	experimental	conditions	in	Chapter	4.	
Successfully	captured	by	Model?	

Query	in	
English	

Query	in	CycL	 Full	
Model	

No	
Back-
ground	

No	
Base	

No	
Sketch	

Adenine	bases	
are	parts	of	
DNA.	

(partTypes DNAMolecule Adenine-Base) 
        P P P 

NO 

Cytosine	bases	
are	parts	of	
DNA.	

(partTypes DNAMolecule Cytosine-Base) 
        P P P 

NO 

Guanine	bases	
are	parts	of	
DNA.	

(partTypes DNAMolecule Guanine-Base) 
        P P P 

NO 

Thymine	bases	
are	parts	of	
DNA.	

(partTypes DNAMolecule Thymine-Base) 
        P P P 

NO 

DNA	
molecules	
have	a	sugar	
phosphate	
backbone.	

(partTypes DNAMolecule 
SugarPhosphateBackbone) 
        

P P P 
NO 

Thymine	
bonds	with	
Adenine.	

(relationAllExists 
hydrogenBondBetween Thymine-Base 
Adenine-Base) 
        

P P P 
NO 

Cytosine	
bonds	with	
Guanine.	

(relationAllExists 
hydrogenBondBetween                    
Cytosine-Base Guanine-Base) 
        

P P P 
NO 

Thymine	only	
bonds	with	
Adenine.	

(relationAllExistsAndOnly 
hydrogenBondBetween                  
Thymine-Base                          
Adenine-Base) 
        

P P P 
NO 

Cytosine	only	
bonds	with	

(relationAllExistsAndOnly 
hydrogenBondBetween                    P P P 

NO 
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Guanine.	 Cytosine-Base                          

Guanine-Base) 
        

DNA	
molecules	are	
very	long.	

(relationAllInstance lengthOfObject 
DNAMolecule Long) P P P 

NO 

Thymine	
connects	with	
Adenine.	

(relationAllExists connectedTo-
Directly Thymine-Base Adenine-Base) 
        

NO	 NO NO NO 

Cytosine	
connects	with	
Guanine.	

(relationAllExists connectedTo-
Directly Cytosine-Base Guanine-Base) 
 

NO	 NO NO NO 
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Ecosystem	/	Web	

Text:	
An	ecosystem	is	like	a	web	structure.		A	change	in	the	ecosystem	is	like	movement	in	the	structure.		Any	
movement	in	the	structure	decreases	its	stability.		The	stability	of	the	structure	is	like	the	stability	of	the	
ecosystem.			

	
Sketch	objects:	
((isa connecting-string ConstructionArtifact) (isa student-2 Student) 
 (isa student-2 TemporalThing) (isa string-moving MovementEvent) (isa student-1 
Student) 
 (isa energy-conversion IntrinsicStateChangeEvent) (isa chem-energy ChemicalEnergy) 
 (isa the-ecosystem Ecosystem) (isa leaf Individual) (isa leaf Autotroph) (isa leaf 
BiologicalLivingObject) 
 (isa leaf Plant) (isa web-stability Stability) (isa person Animal) (isa person 
Predator) 
 (isa person BiologicalLivingObject) (isa person Heterotroph) (isa person Human) 
 (isa the-string String-Textile) (isa the-string Physob) (isa wolf Heterotroph) (isa 
wolf Predator) 
 (isa wolf BiologicalLivingObject) (isa wolf Animal) (isa mushroom Fungus) 
 (isa mushroom (CollectionUnionFn (TheSet Fungus Bacterium))) (isa solar SolarEnergy) 
(isa sheep Animal) 
 (isa sheep BiologicalLivingObject) (isa sheep Prey) (isa sheep Sheep-Domestic) (isa 
sheep Heterotroph)) 
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Gold	Standard	Queries	in	English,	CycL:	
Four	rightmost	columns	show	which	queries	succeeded	in	the	four	experimental	conditions	in	Chapter	4.	

Successfully	captured	by	Model?	
Query	in	
English	

Query	in	CycL	 Full	
Model	

No	
Back-
ground	

No	
Base	

No	
Sketch	

Ecosystems	
have	
producers.	

(relationAllExists possessiveRelation 
Ecosystem Autotroph) 
 

P P 
NO NO 

Ecosystems	
have	
consumers.	

(relationAllExists possessiveRelation 
Ecosystem Heterotroph) 
 

P P P 
NO 

Ecosystems	
have	
predators.	

(relationAllExists possessiveRelation 
Ecosystem Predator) 
 

P P P 
NO 

Ecosystems	
have	prey.	

(relationAllExists possessiveRelation 
Ecosystem Prey) 
 

P P P 
NO 

Fungi	are	
decomposers.	

(relationExistsAll 
decomposerInEcosystem Ecosystem 
Fungus) 
 

P P P 
NO 

Autotrophs	
are	producers.	

(relationExistsAll producerInEcosystem 
Ecosystem Autotroph) 
 

P P 
NO NO 

Heterotrophs	
are	
consumers.	

(relationExistsAll consumerInEcosystem 
Ecosystem Heterotroph) 
 

P P P 
NO 

Predators	eat	
prey.	

(relationAllExists eatsWillingly 
Predator Prey) 
 

P P P 
NO 

Producers	
convert	solar	
energy	to	
chemical	
energy.	

(relationExistsAll doneBy                           
(SubcollectionOfWithRelationToTypeFn  
(SubcollectionOfWithRelationToTypeFn 
IntrinsicStateChangeEvent                            
toState ChemicalEnergy) 
objectOfStateChange SolarEnergy) 
Autotroph) 
 

P P 
NO NO 

Changes	in	the	
ecosystem	
decrease	
stability.	

(qprop-  
 ((QPQuantityFn Stability) Ecosystem)  
 (RateFn (IntrinsicStateChangeOfFn   
   Ecosystem))) 
 

P 
NO	 NO NO 
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Enzyme/Key	

Text:	
An	enzyme	is	like	a	key.		A	substrate	molecule	is	like	a	lock.		The	key	has	ridges.		The	ridges	have	a	
unique	shape.		The	enzyme	binding	site	is	like	the	ridges.		The	enzyme	binding	site	has	a	unique	chemical	
makeup.		The	key	only	unlocks	specific	locks.		The	enzyme	reacts	only	with	specific	substrate	molecules.		
The	key	unlocks	the	lock.		The	enzyme	breaks	apart	the	substrate	molecules.		After	unlocking	a	lock,	the	
key	is	unchanged.		The	key	can	be	used	over	and	over	again.	Enzyme	action	is	like	unlocking	a	lock.		The	
enzyme	is	unchanged	by	the	chemical	reaction.		The	enzyme	can	be	used	over	and	over	again.	

	
Sketch	objects:	
((isa the-enzyme EnzymeMolecule) (isa the-substrate SubstrateMolecule) (isa active-
site EnzymeBindingSite)) 
((isa the-ridge Ridge) (isa the-lock Lock) (isa the-key KeyOfLock)) 
((isa Object-129 Event) (isa Object-129 ChemicalReaction) (isa Object-129 
EnzymeActivationEvent) 
 (isa Object-135 Event) (isa Object-135 UnlockingALock)) 
(isa lock-s1 Event)  
 (isa lock-s2 Event) 
 (isa lock-s2 Situation)  (isa enzymeaction-s3 Situation) (isa enzymeaction-s3 Event) 
(isa enzymeaction-s2 Situation)  
(isa lock-s3 Event) 
(isa lock-s3 Situation) 
(isa enzymeaction-s2 Event) 
 (isa lock-s3 TemporalThing) (isa enzymeaction-s2 TemporalThing) 
 (isa enzymeaction-s1 Event)  
(isa enzymeaction-s1 TemporalThing) 
(isa enzymeaction-s1 Situation) 
(isa enzymeaction-s3 BreakingEvent) 
 (isa lock-s1 TemporalThing)  
(isa lock-s1 Situation) 
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(isa lock-s2 TemporalThing) 
(isa enzymeaction-s3 TemporalThing) 
	
	
	
Gold	Standard	Queries	in	English,	CycL:	
Four	rightmost	columns	show	which	queries	succeeded	in	the	four	experimental	conditions	in	Chapter	4.	

Successfully	captured	by	Model?	
Query	in	
English	

Query	in	CycL	 Full	
Model	

No	
Back-
ground	

No	
Base	

No	
Sketch	

Enzyme	
molecules	
have	unique	
binding	sites.	

(partTypes EnzymeMolecule         
(CollectionIntersectionFn                    
(TheSet EnzymeBindingSite                           
(ThingDescribableAsFn Unique-TheWord 
Adjective)))) 
        

P P P 
NO 

Enzymes	only	
react	with	
specific	
substrates.	

(relationAllExistsAndOnly 
chemicalReactants  
(SubcollectionOfWithRelationToTypeFn                   
(SubcollectionOfWithRelationToTypeFn 
ChemicalReaction                                              
chemicalReactants SubstrateMolecule) 
catalyst EnzymeMolecule)        
(CollectionIntersectionFn          
(TheSet SubstrateMolecule                                   
(ThingDescribableAsFn Specific-TheWord 
Adjective)))) 
        

NO	 NO NO NO 

Enzyme	
action	breaks	
apart	
substrate	
molecules.	

(relationAllExists subEvents 
EnzymeActivationEvent  
(SubcollectionOfWithRelationToTypeFn       
(SubcollectionOfWithRelationToTypeFn 
BreakingEvent doneBy                                                           
EnzymeMolecule) objectOfStateChange 
SubstrateMolecule)) 
       

P P P 
NO 

The	enzyme	
comes	out	of	
the	reaction	
unchanged.	

(relationExistsAll unchangedActors 
EnzymeActivationEvent                       
EnzymeMolecule) 
     

P P P 
NO 

When	
enzymes	bind	
to	substrate	
molecules,	it	
enables	the	
substrate	to	
break	apart.	

(enables-SitTypeSitType         
(SubcollectionOfWithRelationToFn  
(CollectionIntersectionFn  
(TheSet 
(SubcollectionOfWithRelationToTypeFn 
Situation subEvents ChemicalReaction)  
(SubcollectionOfWithRelationToTypeFn 
Situation subEvents                                         

P P P 
NO 
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EnzymeActivationEvent) Situation)) 
holdsIn (relationExistsExists 
objectsIntersect EnzymeMolecule            
SubstrateMolecule))  
(SubcollectionOfWithRelationToTypeFn  
(SubcollectionOfWithRelationToTypeFn 
BreakingEvent doneBy                            
EnzymeMolecule) objectOfStateChange 
SubstrateMolecule)) 
 

Enzymes	can	
be	reused.		

(relationAll repeatedEvent 
EnzymeActivationEvent) 
      

P 
NO NO NO 
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Homeostasis	/	Escalator	

Text:	
Homeostasis	is	like	going	up	a	down	escalator.	The	escalator	is	moving	down.	The	person	is	walking	up.	
Heat	is	constantly	escaping	from	the	human	body.	Heat	escaping	is	like	the	escalator	moving	down.	The	
human	body	makes	the	heat	by	exercising.	Making	the	heat	is	like	walking	up.	Temperature	is	like	the	
height	of	the	person.		
The	heat	loss	and	the	heat	production	are	balanced,	so	the	temperature	remains	constant.		
During	homeostasis,	the	ideal	temperature	of	the	human	body	is	37	degrees	Celsius.	

	
Sketch	objects:	
((isa person-motion Walking-Generic) (isa the-escalator Physob) (isa the-escalator 
Escalator) 
 (isa escalator-motion MovementEvent) (isa temp-scale Temperature) (isa temp-scale 
ScalarOrVectorInterval) 
 (isa bob Physob) (isa bob Person) (isa esc-dir DirectionOfMovement) (isa bob-dir 
DirectionOfMovement) 
 (isa going-up-a-down-esc GoingUpADownEscalator) (isa temp-value 
TemperatureIndicator)) 
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Gold	Standard	Queries	in	English,	CycL:	
Four	rightmost	columns	show	which	queries	succeeded	in	the	four	experimental	conditions	in	Chapter	4.	

Successfully	captured	by	Model?	
Query	in	
English	

Query	in	CycL	 Full	
Model	

No	
Back-
ground	

No	
Base	

No	
Sketch	

Heat	escapes	
from	the	
body.	

(relationExistsAll doneBy           
(SubcollectionOfWithRelationToTypeFn                           
LeavingAPlace fromLocation HumanBody)                   
ThermalEnergy) 
        

NO	 NO NO NO 

The	body	
produces	
heat.	

(relationAllExists products                           
(SubcollectionOfWithRelationToTypeFn 
MakingSomething performedBy                                    
HumanBody) ThermalEnergy) 
        

P P P P 

Heat	loss	and	
heat	
production	
are	balanced	
so	
temperature	
remains	
constant.	

(implies  
(qEqualTo  
 (RateFn    
 (SubcollectionOfWithRelationToTypeFn  
 (MakingFn ThermalEnergy)                                
 beneficiary HumanBody))  
 (RateFn   
 (SubcollectionOfWithRelationToTypeFn  
 LeavingAPlace doneBy ThermalEnergy)))  
(qEqualTo 
 (QPDerivativeFn  
 (CollectionIntersectionFn  
  (TheSet Temperature               
  (ThingDescribableAsFn Ideal-TheWord   
   Adjective))))  
  Zero)) 
        

P 
NO NO NO 

Body	
temperature	
(positively)	
depends	on	
heat	
production.	

(qprop  
  ((QPQuantityFn                     
   (CollectionIntersectionFn  
   (TheSet Temperature                        
   (ThingDescribableAsFn Ideal-TheWord  
   Adjective)))) HumanBody)  
 (RateFn                 
 (SubcollectionOfWithRelationToTypeFn  
 (MakingFn ThermalEnergy)                                              
 beneficiary HumanBody))) 
        

P 
NO NO NO 

Body	
temperature	
(negatively)	
depends	on	
heat	loss.	

(qprop-  
  ((QPQuantityFn  
   (CollectionIntersectionFn  
   (TheSet Temperature                     
   (ThingDescribableAsFn Ideal-TheWord  
   Adjective)))) HumanBody)  
 (RateFn  

P 
NO NO NO 
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 (SubcollectionOfWithRelationToTypeFn  
  LeavingAPlace doneBy                                       
   ThermalEnergy))) 
        

Ideal	body	
temperature	
is	37°C.	

(relationAllInstance measure                             
(CollectionIntersectionFn  
(TheSet Temperature 
(ThingDescribableAsFn Ideal-TheWord 
Adjective)))                      
(DegreeCelsius 37)) 
        

P P P P 
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Membrane	/	Mosaic	

Text:	
A	membrane	is	like	a	mosaic	that	has	liquid	grout.	The	membrane	protein	is	like	the	mosaic	tiles.	The	
lipid	bilayer	is	like	the	grout.	The	tiles	move	in	the	grout.	The	membrane	protein	moves	in	the	lipid	
bilayer.	The	membrane	protein	moves	some	chemical	substances	across	the	membrane.	The	membrane	
protein	blocks	some	substances.	Some	tiles	are	made	of	different	materials.	Some	membrane	proteins	
have	different	functions.	

	
Sketch	objects:	
((isa moving-thru-mosaic CausingAnotherObjectsTranslationalMotion) (isa moving-thru-
mosaic MovementEvent) 
 (isa chemical-substance ChemicalObject) (isa the-fluid-mosaic Mosaic) (isa mosaic-
tile Tile) 
 (isa liquid-grout Grout) (isa moving-thru-membrane MovementEvent) 
 (isa moving-thru-membrane CausingAnotherObjectsTranslationalMotion) (isa membrane-
protein MembraneProtein) 
 (isa lipid-bilayer LipidBilayer) (isa the-bio-membrane BiologicalMembrane)) 
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Gold	Standard	Queries	in	English,	CycL:	
Four	rightmost	columns	show	which	queries	succeeded	in	the	four	experimental	conditions	in	Chapter	4.	

Successfully	captured	by	Model?	
Query	in	
English	

Query	in	CycL	 Full	
Model	

No	
Back-
ground	

No	
Base	

No	
Sketch	

Membrane	
proteins	
move	things	
across	the	
membrane.	

(relationExistsAll doneBy  
(SubcollectionOfWithRelationToTypeFn  
(SubcollectionOfWithRelationToTypeFn               
CausingAnotherObjectsTranslationalMotion 
objectActedOn (SetOfTypeFn 
PartiallyTangible))  
across-UnderspecifiedRegion                            
BiologicalMembrane) MembraneProtein) 
 

P P 
NO P 

Membranes	
can	block	
substances.	

(relationExistsAll barrier  
(SubcollectionOfWithRelationToTypeFn 
BarrierSituation blockedPath                                                     
(SetOfTypeFn PartiallyTangible)) 
MembraneProtein) 
        

P P P P 

Different	
membrane	
proteins	
have	
different	
functions.	

(relationAllExists possessiveRelation 
(SetOfTypeFn MembraneProtein)  
(CollectionIntersectionFn                 
(TheSet Capability                                   
(ThingDescribableAsFn Differ-TheWord 
Adjective-Gradable)))) 
        

P P P 
NO 

Membrane	
proteins	
move	within	
the	lipid	
bilayer.	

(and  
(relationExistsAll primaryObjectMoving 
MovementEvent MembraneProtein            
(relationAllExists  
in-UnderspecifiedContainer 
MembraneProtein LipidBilayer)) 
        

P P P 
NO 

Membranes	
have	
membrane	
proteins.		

(partTypes BiologicalMembrane 
MembraneProtein) P P 

NO NO 

Membranes	
have	lipid	
bilayers.	

(partTypes BiologicalMembrane 
LipidBilayer))) P P P 

NO 
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Taxonomy	/	Supermarket	

Text:	
A	biological	classification	system	is	like	a	supermarket.		Supermarkets	have	many	sections.		Customers	
use	the	sections	to	find	the	products.	Large	sections	have	many	different	products.		Small	sections	have	
fewer	products.		Finding	products	depends	on	attributes	of	products.	Some	products	fit	into	many	
different	sections.	Supermarkets	use	different	sections.		But	all	supermarkets	have	sections.	
Biological	classification	systems	have	many	groups.		Biologists	use	groups	to	study	species.		Large	groups	
have	high	diversity.		Small	groups	have	low	diversity.		Grouping	species	depends	on	attributes	of	species.	
Some	species	are	difficult	to	group.	Different	biological	classification	systems	have	different	groups.		But	
all	biological	classification	systems	have	groups.			

	
Sketch	objects:	
((isa HomoGenus BiologicalGenus) (isa HomoGenus Group) (isa Object-76 
BiologicalFamily) 
 (isa Object-76 Group) (isa Object-62 Group) (isa Object-62 BiologicalSpecies) 
 (isa RefrigeratedMarketCategory ExistingObjectType) 
 (isa RefrigeratedMarketCategory RefrigeratedMarketCategory) 
 (isa RefrigeratedMarketCategory ProductTypeByMarketCategory) (isa Object-218 
GroceryMarketCategory) 
 (isa Object-134 BlueWhale) (isa Object-134 Organism-Whole) (isa Object-90 
BiologicalOrder) 
 (isa Object-90 Group) (isa Object-241 Product) (isa Object-241 GoatCheese) 
 (isa cheese-section CheeseMarketCategory) (isa DairyMarketCategory 
ExistingObjectType) 
 (isa DairyMarketCategory DairyMarketCategory) (isa DairyMarketCategory 
ProductTypeByMarketCategory) 
 (isa Object-232 NonperishableMarketCategory) (isa Object-102 BiologicalGenus) (isa 
Object-102 Group) 
 (isa Object-99 BiologicalGenus) (isa Object-99 Group) (isa Object-92 Group) 
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 (isa Object-92 BiologicalFamily) (isa Object-124 BiologicalGenus) (isa Object-124 
Group) 
 (isa Object-113 Group) (isa Object-113 BiologicalGenus) (isa HominidaeFamily Group) 
 (isa HominidaeFamily BiologicalFamily) (isa HominidaeFamily 
QAClarifyingCollectionType) 
 (isa homo-henry Organism-Whole) (isa homo-henry HomoSapiens) (isa Object-239 
NutsMarketCategory) 
 (isa Object-111 BiologicalGenus) (isa Object-111 Group) (isa HomoSapiens 
OrganismClassificationType) 
 (isa HomoSapiens Group) (isa HomoSapiens BiologicalSpecies) (isa Object-52 
BiologicalClass) 
 (isa Object-52 Group) (isa Object-114 Group) (isa Object-114 BiologicalGenus) 
 (isa Object-119 BiologicalGenus) (isa Object-119 Group) (isa rhesus-ramona Monkey) 
 (isa rhesus-ramona Organism-Whole) (isa MacacaMulattaSpecies BiologicalSpecies) 
 (isa MacacaMulattaSpecies Group) (isa Object-72 Group) (isa Object-72 
BiologicalGenus) 
 (isa Object-56 BiologicalSpecies) (isa Object-56 Group) (isa Object-126 
BiologicalGenus) 
 (isa Object-126 Group) (isa Object-125 Group) (isa Object-125 BiologicalGenus) (isa 
Object-74 Group) 
 (isa Object-74 BiologicalGenus) (isa Object-118 BiologicalGenus) (isa Object-118 
Group) 
 (isa Object-58 BiologicalSpecies) (isa Object-58 Group) (isa yogurt-section 
YogurtCategory) 
 (isa Primate KEClarifyingCollectionType) (isa Primate OrganismClassificationType) 
(isa Primate Group) 
 (isa Primate BiologicalOrder) (isa Object-94 BiologicalFamily) (isa Object-94 Group) 
 (isa Object-60 BiologicalSpecies) (isa Object-60 Group) (isa Object-101 
BiologicalGenus) 
 (isa Object-101 Group) (isa Object-112 Group) (isa Object-112 BiologicalGenus) 
 (isa Object-234 FreshFruitMarketCategory) (isa Object-109 BiologicalGenus) (isa 
Object-109 Group) 
 (isa homo-genus-2 Group) (isa homo-genus-2 BiologicalGenus) (isa Object-68 Group) 
 (isa Object-68 BiologicalSpecies) (isa Object-70 BiologicalSpecies) (isa Object-70 
Group) 
 (isa Object-64 Group) (isa Object-64 BiologicalSpecies) (isa Object-66 Group) 
 (isa Object-66 BiologicalSpecies) (isa homo-species-2 BiologicalSpecies) (isa homo-
species-2 Group) 
 (isa Object-100 BiologicalGenus) (isa Object-196 FreshVegetablesMarketCategory) 
 (isa Object-110 BiologicalGenus) (isa Object-110 Group) (isa Object-120 
BiologicalGenus) 
 (isa Object-120 Group) (isa milk-section MilkMarketCategory) (isa cream-category 
CreamMarketCategory) 
 (isa the-taxonomy Taxonomy) (isa the-store GroceryStore)) 
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Gold	Standard	Queries	in	English,	CycL:	
Four	rightmost	columns	show	which	queries	succeeded	in	the	four	experimental	conditions	in	Chapter	4.	

Successfully	captured	by	Model?	
Query	in	
English	

Query	in	CycL	 Full	
Model	

No	
Back-
ground	

No	
Base	

No	
Sketch	

Taxonomies	
are	
classification	
systems.	

(genls Taxonomy ClassificationSystem) P P P 
NO 

Larger	groups	
have	greater	
diversity.	

(relationAllInstance 
possessiveRelation                         
(SubcollectionOfWithRelationToFn Group        
sizeParameterOfObject               
(RelativeGenericValueFn 
sizeParameterOfObject Group 
highAmountOf))                     
(HighAmountFn Diversity)) 
        

NO	 NO NO NO 

Smaller	
groups	have	
lower	
diversity.	

(relationAllInstance 
possessiveRelation                   
(SubcollectionOfWithRelationToFn Group        
sizeParameterOfObject                             
(RelativeGenericValueFn 
sizeParameterOfObject Group 
veryLowToLowAmountOf)) 
(LowAmountFn Diversity))     
        

NO	 NO NO NO 

Grouping	an	
organism	
depends	on	
its	properties.	

(relationAllExists  
dependsOn-Underspecified                   
(GroupingOfFn Organism-Whole)          
(SubcollectionOfWithRelationFromTypeFn                     
AttributeCharacteristicOfAnEntity  
possessiveRelation BiologicalSpecies)) 
        

NO	 NO NO NO 

Some	species	
are	difficult	to	
classify.	

(relationExistsInstance 
degreeOfDifficulty (GroupingFn 
BiologicalSpecies) Difficult) 
 

NO	 NO NO NO 

Taxonomies	
have	many	
different	
groups.	

(relationAllExistsRange 
possessiveRelation Taxonomy 
(SetOfTypeFn Group) Many-Quant) 
        

NO	 NO P 
NO 

Order	is	more	
specific	than	
class.	

(relationAllExists possessiveRelation 
BiologicalClass BiologicalOrder) 
    

P 
NO P 

NO 

Family	is	
more	specific	
than	order.	

(relationAllExists possessiveRelation 
BiologicalOrder BiologicalFamily) 
        

P 
NO P 

NO 
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Genus	is	
more	specific	
than	family.	

(relationAllExists possessiveRelation 
BiologicalFamily BiologicalGenus) 
        

P 
NO P 

NO 

Species	is	
more	specific	
than	genus.	

(relationAllExists possessiveRelation 
BiologicalGenus BiologicalSpecies) 
        

NO NO NO NO 

An	organism	
can	belong	to	
many	
different	
groups.	

(relationAllExistsRange member 
Organism-Whole Group Many-Quant) 
        

NO	 NO NO NO 
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Voltage	/	Pressure		

Text:	
A	battery	is	like	a	hole	in	a	bottle.	The	water	flows	through	the	hole.	The	greater	the	depth,	the	greater	
the	water	flow	rate.	Electricity	flows	through	the	battery.	The	battery	has	voltage.	Voltage	is	like	depth.	
The	greater	the	voltage,	the	greater	the	flow	of	electricity.	
	

	
Sketch	objects:	
((isa Object-46 DirectionOfMovement) (isa hole-in-bottle PolyDimensionalThing) 
 (isa hole-in-bottle FluidConduit) (isa the-bottle Container) (isa the-bottle Bottle) 
(isa the-bottle Physob) (isa depth-of-hole Depth) (isa Object-44 DirectionOfMovement) 
(isa the-water Liquid-StateOfMatter) (isa Object-43 DirectionOfMovement)) 
	
Gold	Standard	Queries	in	English,	CycL:	

Four	rightmost	columns	show	which	queries	succeeded	in	the	four	experimental	conditions	in	Chapter	4.	
Successfully	captured	by	Model?	

Query	in	
English	

Query	in	CycL	 Full	
Model	

No	
Back-
ground	

No	
Base	

No	
Sketch	

The	flow	of	
electricity	
(positively)	
depends	on	
the	battery	
voltage.	

(qprop (RateFn (FlowFn Electricity)) 
((QPQuantityFn Voltage) Battery)) P 

NO	 NO NO 
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APPENDIX	B:	Science	Questions	

NYSRE-2014-8SCI-19	 1	
NYSRE-2014-LE-01	 2	
NYSRE-2014-LE-04	 3	
NYSRE-2014-LE-21	 4	
NYSRE-2014-LE-28	 5	
MCAS-2014-BIO-03	 6	
MCAS-2014-BIO-07	 7	
MCAS-2014-BIO-09	 8	
MCAS-2014-BIO-10	 9	
MCAS-2014-BIO-17	 10	
MCAS-2014-BIO-35	 11	
MCAS-2014-BIO-39	 12	
MCAS-K8-EE-14	 13	
MCAS-K8-EE-20	 14	
	

1. A	single	human	body	cell	typically	contains	thousands	of		
a. genes	 	
b. nuclei	 	
c. chloroplasts	 	
d. bacteria	

2. A	function	of	cell	membranes	is	humans	is	the	
a. synthesis	of	the	amino	acids	
b. production	of	energy	
c. replication	of	genetic	material	
d. recognition	of	certain	chemicals	

3. Which	statement	best	describes	the	organelles	in	a	cell?		
a. All	organelles	are	involved	directly	with	communication	between	cells.	 	
b. Organelles	must	work	together	and	their	activities	must	be	coordinated	 	
c. Organelles	function	only	when	there	is	a	disruption	in	homeostasis	
d. Each	organelle	must	function	independently	of	the	others	in	order	to	maintain	

homeostasis	
4. Human	population	growth	has	led	to	a	reduction	in	the	populations	of	predators	throughout	

natural	ecosystems	across	the	United	States.	Scientists	consider	the	loss	of	these	predators	to	
have	a		 	

a. positive	effect,	because	an	increase	in	their	prey	helps	to	maintain	stability	in	the	
ecosystem	

b. positive	effect,	because	the	predators	usually	eliminate	the	species	they	prey	on	
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c. negative	effect,	because	predators	have	always	made	up	a	large	portion	of	our	food	
supply	

d. negative	effect,	because	predators	have	an	important	role	in	maintaining	stable	
ecosystems	

5. A	variety	of	pear	tree,	known	as	Bradford,	was	originally	introduced	into	the	eastern	United	
States	in	the	1960s.		Today,	this	tree	is	crowding	out	other	plants	in	these	states.		This	situation	
best	illustrates	 	

a. an	unintentional	negative	effect	of	altering	an	ecosystem	
b. how	a	foreign	species	is	controlled	in	the	eastern	United	States	
c. that	the	introduction	of	a	foreign	species	does	not	affect	food	webs	
d. that	serious	environmental	consequences	can	be	avoided	by	importing	a	foreign	species	

6. If	the	producers	in	a	food	web	were	removed,	which	of	the	following	changes	would	most	likely	
occur?	 	

a. The	entire	food	web	would	collapse	over	time.	
b. The	food	web	would	depend	on	the	decomposers	for	energy.	
c. The	consumers	would	begin	making	energy	for	the	food	web.	
d. The	populations	of	the	remaining	organisms	in	the	food	web	would	increase.	

7. Within	a	prey	population,	which	of	the	following	is	most	immediately	affected	by	the	arrival	of	a	
new	predator?	

a. death	rate	
b. evolution	rate	
c. immigration	rate	
d. maturation	rate	

8. Which	of	the	following	is	a	function	of	the	nucleus	in	organism	2?	 	
a. absorbing	sunlight	
b. releasing	usable	energy		
c. storing	genetic	material	
d. producing	food	molecules	

9. In	the	three	organisms,	what	are	synthesized	by	the	ribosomes?	
a. Carbohydrates	
b. Lipids	
c. nucleic	acids	
d. proteins	

10. Which	of	the	following	best	describes	the	producers	in	a	terrestrial	food	web?	 	
a. They	are	at	the	highest	trophic	level.	
b. They	are	not	affected	by	decomposers.	 	
c. They	convert	solar	energy	to	chemical	energy.	
d. They	obtain	all	their	nutrients	and	energy	from	consumers.	

11. Which	of	the	following	is	the	best	example	of	the	human	body	maintaining	homeostasis?	
a. The	heart	beats	using	cardiac	muscle	
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b. The	breathing	rate	increases	during	exercise.	
c. The	nose	and	ear	contain	cartilage	for	flexibility.		
d. The	digestive	system	uses	enzymes	to	break	down	food.	

12. In	a	sample	of	double-stranded	DNA,	30%	of	the	nitrogenous	bases	are	thymine.	What	
percentage	of	the	nitrogenous	bases	in	the	sample	are	adenine?		

a. 20%	
b. 30%	
c. 60%	
d. 70%	

13. Jamal	wants	to	make	an	electrical	circuit,	but	he	only	has	the	objects	shown	below.		Which	of	
the	following	must	Jamal	also	have	to	make	an	electrical	circuit?		

a. a	motor	
b. a	switch	
c. a	bar	magnet	
d. a	power	source	

14. The	diagram	below	shows	a	project	that	a	student	made	to	test	an	electrical	circuit.		Part	of	the	
electrical	circuit	is	underneath	the	board.		When	the	student	connect	the	two	nails	using	a	wire,	
the	bulb	lights	up.		Which	of	the	following	must	be	underneath	the	board?	

a. a	magnet	and	a	switch	
b. a	switch	and	some	wires	
c. a	magnet	and	a	power	source	
d. a	power	source	and	some	wires	

	

	

 

;; NYSRE-2014-8SCI-19 
;; A single human body cell typically contains thousands of 
(queryForQuestion NYSRE-2014-8SCI-19 (relationAllExistsRange physicalParts Cell 
?cell-part Thousands-Quant)) 
(multipleChoiceSingleOptionList NYSRE-2014-8SCI-19 (TheList Gene-HereditaryUnit 1)) 
(multipleChoiceSingleOptionList NYSRE-2014-8SCI-19 (TheList CellNucleus 2)) 
(multipleChoiceSingleOptionList NYSRE-2014-8SCI-19 (TheList Chloroplast 3))  
(multipleChoiceSingleOptionList NYSRE-2014-8SCI-19 (TheList Bacterium 4)) 
(correctAnswerChoice NYSRE-2014-8SCI-19 1) 
 
 
 
;; NYSRE-2014-LE-01 
;; A function of cell membranes is humans is the 
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(queryForQuestion NYSRE-2014-LE-01 (relationExistsAll doneBy ?functional-event 
CellMembrane))  
(multipleChoiceSingleOptionList NYSRE-2014-LE-01 (TheList (MakingFn AminoAcid) 1)) 
(multipleChoiceSingleOptionList NYSRE-2014-LE-01 (TheList (MakingFn EnergyStuff) 2)) 
(multipleChoiceSingleOptionList NYSRE-2014-LE-01 (TheList Replication-DNA 3))  
(multipleChoiceSingleOptionList NYSRE-2014-LE-01 (TheList (IdentifyingAsTypeFn 
ChemicalObject) 4)) 
(correctAnswerChoice NYSRE-2014-LE-01 4) 
 
 
;; NYSRE-2014-LE-04 
;; Which statement best describes the organelles in a cell? 
(queryForQuestion NYSRE-2014-LE-04 (trueQuestionOption NYSRE-2014-LE-04 ?n)) 
(multipleChoiceSingleOptionList  
 NYSRE-2014-LE-04  
 (TheList (relationExistsAll  
           doneBy  
           (SubcollectionOfWithRelationToTypeFn  
            InformationTransferPhysicalEvent  
            informationDestination  
            Cell) 
           Organelle) 
          1)) 
(multipleChoiceSingleOptionList  
 NYSRE-2014-LE-04  
 (TheList (relationExistsAll members FunctionalSystem Organelle) 2)) 
(multipleChoiceSingleOptionList  
 NYSRE-2014-LE-04  
 (TheList (responsibleFor-TypeType (PreventingFn Homeostasis) (ActorPlaysRoleFn 
Organelle doneBy)) 3)) 
(multipleChoiceSingleOptionList  
 NYSRE-2014-LE-04  
 (TheList (responsibleFor-TypeType 
           (ActorPlaysRoleFn Organelle doneBy) 
           Homeostasis) 
          4)) 
(correctAnswerChoice NYSRE-2014-LE-04 2) 
 
 
 
 
(in-microtheory (ATQuestionMtFn NYSRE-2014-LE-21) :exclude-globals t) 
(isa (ATQuestionMtFn NYSRE-2014-LE-21) (InformationThingAboutFn NYSRE-2014-LE-21)) 
(isa this-ecosystem Ecosystem) 
(consumerInEcosystem this-ecosystem these-humans) 
(consumerInEcosystem this-ecosystem other-predators) 
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(eatsWillingly other-predators other-prey) 
(isa human-pop-growth IncreaseEvent) 
(isa human-pop-growth IntrinsicStateChangeEvent) 
(objectOfStateChange human-pop-growth this-ecosystem) 
(objectOfStateChange human-pop-growth other-predators) 
(isa predator-decline DecreaseEvent) 
(isa predator-decline IntrinsicStateChangeEvent) 
(objectOfStateChange predator-decline this-ecosystem) 
(causes-EventEvent human-pop-growth predator-decline) 
;; Question info 
(in-microtheory AnalogyTutorEvaluationQuestionsMt)  
(queryForQuestion NYSRE-2014-LE-21 (trueQuestionOption NYSRE-2014-LE-21 ?n)) 
(multipleChoiceSingleOptionList NYSRE-2014-LE-21 (TheList (and (causes-Event 
predator-decline ?prey-increase) 
                                                               (isa ?prey-increase 
IncreaseEvent) 
                                                               ;; something about 
increasing prey population 
                                                               
(positivelyInfluencedBy ((QPQuantityFn Stability) this-ecosystem) 
                                                                                       
(RateFn ?prey-increase))) 
                                                          1)) 
(multipleChoicesingleOptionList NYSRE-2014-LE-21 (TheList (and (causes-Event 
predator-decline ?ext) 
                                                               (isa ?ext Extinction) 
                                                               
(positivelyInfluencedBy  
                                                                ((QPQuantityFn 
Stability) this-ecosystem)  
                                                                (RateFn ?ext))) 
                                                          2)) 
(multipleChoicesingleOptionList NYSRE-2014-LE-21 (TheList (and (eatsWillingly these-
humans ?food-supply) 
                                                               
(negativelyInfluencedBy  
                                                                (AmountOfFn ?food-
supply) 
                                                                (RateFn predator-
decline))) 
                                                          3)) 
(multipleChoicesingleOptionList NYSRE-2014-LE-21 (TheList (negativelyInfluencedBy  
                                                           ((QPQuantityFn Stability) 
this-ecosystem)  
                                                           (RateFn predator-decline)) 
                                                          4)) 
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(correctAnswerChoice NYSRE-2014-LE-21 4) 
 
 
 
;; 
;; NYSRE-2014-LE-28 
 (in-microtheory (ATQuestionMtFn NYSRE-2014-LE-28)) 
(isa (ATQuestionMtFn NYSRE-2014-LE-28) (InformationThingAboutFn NYSRE-2014-LE-28)) 
(isa BradfordTree OrganismClassificationType) 
(genls BradfordTree Tree-ThePlant) 
(isa this-ecosystem Ecosystem) 
(producerInEcosystem this-ecosystem these-bradford-trees) 
(producerInEcosystem this-ecosystem other-plants) 
(isa introduction-of-btree IncreaseEvent) 
(isa introduction-of-btree IntrinsicStateChangeEvent) 
(objectOfStateChange introduction-of-btree this-ecosystem) 
(objectOfStateChange introduction-of-btree other-plants) 
;; Question info 
(in-microtheory AnalogyTutorEvaluationQuestionsMt)  
(queryForQuestion NYSRE-2014-LE-28 (trueQuestionOption NYSRE-2014-LE-28 ?n)) 
(multipleChoiceSingleOptionList NYSRE-2014-LE-28 (TheList (negativelyInfluencedBy 
                                                           ((QPQuantityFn Stability) 
this-ecosystem) 
                                                           (RateFn introduction-of-
btree)) 
                                                          1)) 
(multipleChoicesingleOptionList NYSRE-2014-LE-28 (TheList (objectControlled 
?controlling-btrees these-bradford-trees) 
                                                          2)) 
(multipleChoicesingleOptionList NYSRE-2014-LE-28 (TheList (falseSentence 
                                                           (influencedBy 
                                                            ((QPQuantityFn Stability) 
this-ecosystem) 
                                                            (RateFn introduction-of-
btree))) 
                                                          3)) 
(multipleChoicesingleOptionList NYSRE-2014-LE-28 (TheList (preventedProp 
                                                           introduction-of-btree 
                                                           (negativelyInfluencedBy 
                                                            ((QPQuantityFn Stability) 
this-ecosystem) 
                                                            (RateFn introduction-of-
btree))) 
                                                          4)) 
 
(correctAnswerChoice NYSRE-2014-LE-28 1) 
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;; 
;; MCAS-2014-BIO-03 
 (in-microtheory (ATQuestionMtFn MCAS-2014-BIO-03)) 
(isa (ATQuestionMtFn MCAS-2014-BIO-03) (InformationThingAboutFn MCAS-2014-BIO-03)) 
(isa this-ecosystem Ecosystem) 
(producerInEcosystem this-ecosystem these-producers) 
(isa these-producers Autotroph) 
;; question info 
(in-microtheory AnalogyTutorEvaluationQuestionsMt) 
(queryForQuestion MCAS-2014-BIO-03 (trueQuestionOption MCAS-2014-BIO-03 ?n)) 
(multipleChoiceSingleOptionList  
 MCAS-2014-BIO-03  
 (TheList (relationAllExists  
           requires-Underspecified 
           Ecosystem  
           Autotroph) 
          1)) 
(multipleChoiceSingleOptionList 
 MCAS-2014-BIO-03 
 (TheList (relationExistsExists 
           producerInEcosystem 
           Ecosystem 
           (SubcollectionOfWithRelationFromTypeFn BiologicalLivingObject 
decomposerInEcosystem Ecosystem)) 
          2)) 
(multipleChoiceSingleOptionList 
 MCAS-2014-BIO-03 
 (TheList (relationExistsExists  
           producerInEcosystem  
           Ecosystem  
           Heterotroph) 
          3)) 
(multipleChoiceSingleOptionList 
 MCAS-2014-BIO-03 
 (TheList (negativelyInfluencedBy 
           ((QPQuantityFn Population) this-ecosystem) 
           ((QPQuantityFn Population) these-producers)) 
          4)) 
(correctAnswerChoice MCAS-2014-BIO-03 1) 
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;; 
;; MCAS-2014-BIO-07 
 (in-microtheory (ATQuestionMtFn MCAS-2014-BIO-07)) 
(isa (ATQuestionMtFn MCAS-2014-BIO-07) (InformationThingAboutFn MCAS-2014-BIO-07)) 
(isa this-ecosystem Ecosystem) 
(isa predator (SetOfTypeFn BiologicalLivingObject)) 
(predatorInEcosystem this-ecosystem predator) 
(isa prey (SetOfTypeFn BiologicalLivingObject)) 
(preyInEcosystem this-ecosystem prey) 
(eatsWillingly predator prey) 
;; question info: 
(in-microtheory AnalogyTutorEvaluationQuestionsMt) 
(queryForQuestion MCAS-2014-BIO-07 (influencedBy ?x ((QPQuantityFn Population) 
predator))) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-07 (TheList (RateFn (DeathFn prey)) 1)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-07 (TheList (RateFn 
(SubcollectionOfWithRelationToFn Evolution doneBy prey)) 2)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-07 (TheList (RateFn 
(SubcollectionOfWithRelationToFn Immigration doneBy prey)) 3)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-07 (TheList (RateFn 
(SubcollectionOfWithRelationToFn Maturing doneBy prey)) 4)) 
(correctAnswerChoice MCAS-2014-BIO-07 1) 
  
                   
 
 
 
 
;; 
;; MCAS-2014-BIO-09 
;; Which of the following is a function of the nucleus in organism 2? 
(visualAidForQuestion MCAS-2014-BIO-09 (VisualAidForQuestionMtFn MCAS-2014-BIO-08-
11)) 
(queryForQuestion MCAS-2014-BIO-09 (relationExistsAll performedBy ?functional-event 
CellNucleus)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-09 (TheList 
(SubcollectionOfWithRelationToTypeFn AbsorptionEvent objectActedOn Sunlight) 1)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-09 (TheList (MakingAbstractAvailableFn 
EnergyStuff) 2)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-09 (TheList (StoringFn Gene-
HereditaryUnit) 3)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-09 (TheList (MakingFn Food) 4)) 
(correctAnswerChoice MCAS-2014-BIO-09 3) 
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;; 
;; MCAS-2014-BIO-10 
 (queryForQuestion MCAS-2014-BIO-10 (relationExistsAll performedBy (MakingFn 
?product) Ribosome)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-10 (TheList CarbohydrateStuff 1)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-10 (TheList Lipid 2)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-10 (TheList DNAMolecule 3)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-10 (TheList ProteinStuff 4)) 
(correctAnswerChoice MCAS-2014-BIO-10 4) 
 
 
 
;; MCAS-2014-BIO-17 
 (queryForQuestion MCAS-2014-BIO-17 (trueQuestionOption MCAS-2014-BIO-17 ?n)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-17 (TheList (genls Autotroph 
Heterotroph) 1)) 
(multipleChoiceSingleOptionList  
 MCAS-2014-BIO-17 
 (TheList 
  (falseSentence (dependsOn-Underspecified  
                  Autotroph 
                  (SubcollectionOfWithRelationFromTypeFn BiologicalLivingObject 
decomposerInEcosystem Ecosystem))) 
  2)) 
(multipleChoiceSingleOptionList  
 MCAS-2014-BIO-17 
 (TheList 
  (relationExistsAll  
   doneBy 
   (SubcollectionOfWithRelationToTypeFn 
    (SubcollectionOfWithRelationToTypeFn IntrinsicStateChangeEvent toState 
ChemicalEnergy) 
    objectOfStateChange 
    SolarEnergy) 
   Autotroph) 
  3)) 
(multipleChoiceSingleOptionList  
 MCAS-2014-BIO-17 
 (TheList 
  (relationExistsAll  
   from-UnderspecifiedLocation 
   (SubcollectionOfwithRelationToTypeFn  
    (MakingAvailableFn Food)  
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    doneBy  
    (SubcollectionOfWithRelationFromTypeFn BiologicalLivingObject consumerInEcosystem 
Ecosystem)) 
   Autotroph) 
  4)) 
(correctAnswerChoice MCAS-2014-BIO-17 3) 
 
 
 
 
 
 
;; MCAS-2014-BIO-35 
 (in-microtheory (ATQuestionMtFn MCAS-2014-BIO-35)) 
(isa (ATQuestionMtFn MCAS-2014-BIO-35) (InformationThingAboutFn MCAS-2014-BIO-35)) 
;; situation 1 
(isa heart-beating HeartBeating) 
(instrument-Generic heart-beating muscle) 
(isa muscle CardiacMuscle) 
;; situation 2 
(isa breathing Breathing) 
(isa exercise Exercising) 
(causes-EventEvent exercise breathing) 
(positivelyInfluencedBy (RateFn breathing) (RateFn exercise)) 
;; situation 3 
(isa nose Nose) 
(isa ear Ear) 
(isa nose-and-ear-makeup Configuration) 
(holdsIn nose-and-ear-makeup 
         (possessiveRelation nose nose-cartilage)) 
(holdsIn nose-and-ear-makeup 
         (possessiveRelation ear ear-cartilage)) 
(positivelyInfluencedBy 
 ((QPQuantityFn Flexibility) ear) 
 (AmountOfFn ear-cartilage)) 
(positivelyInfluencedBy 
 ((QPQuantityFn Flexibility) nose) 
 (AmountOfFn nose-cartilage)) 
;; situation 4 
(isa e EnzymeMolecule) 
(isa d DigestiveSystem) 
(isa breaking-down-food DigestionEvent) 
(doneBy breaking-down-food d) 
(instrument-Generic breaking-down-food e) 
;; question info 
(in-microtheory AnalogyTutorEvaluationQuestionsMt) 



165	
	
(queryForQuestion MCAS-2014-BIO-35 (isa ?x BiologicalHomeostasis)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-35 (TheList heart-beating 1)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-35 (TheList breathing 2)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-35 (TheList nose-and-ear-makeup 3)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-35 (TheList breaking-down-food 4)) 
 
             
 
 
 
(in-microtheory (ATQuestionMtFn MCAS-2014-BIO-39)) 
(isa (ATQuestionMtFn MCAS-2014-BIO-39) (InformationThingAboutFn MCAS-2014-BIO-39)) 
(isa sample-dna DNAMolecule) 
(isa thymine-bases (SetOfTypeFn Thymine-Base)) 
(isa adenine-bases (SetOfTypeFn Adenine-Base)) 
(isa guanine-bases (SetOfTypeFn Guanine-Base)) 
(isa cytosine-bases (SetOfTypeFn Cytosine-Base)) 
(physicalParts sample-dna thymine-bases) 
(physicalParts sample-dna adenine-bases) 
(physicalParts sample-dna guanine-bases) 
(physicalParts sample-dna cytosine-bases) 
(percentOfIndividual thymine-bases sample-dna (Percent 30)) 
 
(queryForQuestion MCAS-2014-BIO-39 (percentOfIndividual adenine-bases sample-dna 
(Percent ?x))) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-39 (TheList 20 1)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-39 (TheList 30 2)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-39 (TheList 60 3)) 
(multipleChoiceSingleOptionList MCAS-2014-BIO-39 (TheList 70 4)) 
(correctAnswerChoice MCAS-2014-BIO-39 2) 
 
 
 
 
;; 
;; MCAS-K8-EE-14 
;; Jamal wants to make an electrical circuit, but he only has the objects shown 
below.   
;; Which of the following must Jamal also have to make an electrical circuit? 
;; Scenario info 
(in-microtheory (ATQuestionMtFn MCAS-K8-EE-14)) 
(isa (ATQuestionMtFn MCAS-K8-EE-14) (InformationThingAboutFn MCAS-K8-EE-14)) 
(isa circuit-materials (SetOfTypeFn ElectricalComponent)) 
(isa hypothetical-circuit SeriesCircuit) 
(isa jamals-wire Wire) 
(physicalParts hypothetical-circuit jamals-wire) 
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(isa jamals-bulb LightBulbIncandescent) 
(physicalParts hypothetical-circuit jamals-bulb) 
(physicalParts hypothetical-circuit missing-piece) 
;; End scenario info 
;; Question info 
(in-microtheory AnalogyTutorEvaluationQuestionsMt)  
(queryForQuestion MCAS-K8-EE-14 (isa missing-piece ?missing-type)) 
(multipleChoiceSingleOptionList MCAS-K8-EE-14 (TheList ElectricalMotor 1)) 
(multipleChoiceSingleOptionList MCAS-K8-EE-14 (TheList ElectricalSwitch 2)) 
(multipleChoiceSingleOptionList MCAS-K8-EE-14 (TheList Magnet 3)) 
(multipleChoiceSingleOptionList MCAS-K8-EE-14 (TheList Battery 4)) 
(correctAnswerChoice MCAS-K8-EE-14 4) 
 
 
;; 
;; MCAS-K8-EE-20 
;; scenario info 
(in-microtheory (ATQuestionMtFn MCAS-K8-EE-20)) 
(isa (ATQuestionMtFn MCAS-K8-EE-20) (InformationThingAboutFn MCAS-K8-EE-20)) 
(visualAidForQuestion MCAS-K8-EE-20 (VisualAidForQuestionMtFn MCAS-K8-EE-20)) 
;; question info 
(in-microtheory AnalogyTutorEvaluationQuestionsMt)  
(queryForQuestion MCAS-K8-EE-20 (and (isa hidden-thing1 ?hidden-type1) 
                                     (isa hidden-thing2 ?hidden-type2))) 
(multipleChoiceSingleOptionList MCAS-K8-EE-20 (TheList (TheSet Magnet 
ElectricalSwitch) 1)) 
(multipleChoiceSingleOptionList MCAS-K8-EE-20 (TheList (TheSet ElectricalSwitch 
(SetOfTypeFn Wire)) 2)) 
(multipleChoiceSingleOptionList MCAS-K8-EE-20 (TheList (TheSet Magnet Battery) 3)) 
(multipleChoiceSingleOptionList MCAS-K8-EE-20 (TheList (TheSet Battery (SetOfTypeFn 
Wire)) 4)) 
(correctAnswerChoice MCAS-K8-EE-20 4) 



167	
	

 
 

 

 

Visual	aid	for	question:	MCAS-K8-EE-20 4	

	

Sketch	Objects:	

(isa diagram-nail2 Nail) 
(isa diagram-board Board-PieceOfWood) 
(isa diagram-bulb LightBulbIncandescent) 
(isa student-circuit SeriesCircuit) 
(isa diagram-wire Wire) 
(isa student-circuit ElectricalCircuit) 
(isa diagram-nail1 Nail) 
	

Sketch	Objects	with	no	labels:	

hidden-thing1 
hidden-thing2 
	


